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Chow varieties

Let V be a finite dimensional C-vector space. For a fixed d,

consider the map

Chd : P(V )×d → P(Symd V )

([v1], . . . , [vd]) → [v1 · · · vd]

The image of this map, which we denote Chd(Pn) if

dimV = n+ 1, is a Chow variety (of 0-cycles), split variety, or

variety of complete decomposable (or reducible) forms.
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Question

For a given n, d, s, what is dimσs(Chd(Pn))?
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Chow rank

For generic f ∈ σs(Chd(Pn)),

f =

s∑
i=1

ℓi,1 · · · ℓi,d.

Computational complexity: This decomposition gives us an

efficient way of evaluating f .
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Expected dimension

expdimσs(Chd(Pn)) = min

{
s(dn+ 1),

(
n+ d

d

)}
− 1

s(dn+ 1) ≤
(
n+d
d

)
=⇒ subabundant

s(dn+ 1) ≥
(
n+d
d

)
=⇒ superabundant
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Defective cases

Theorem

If n ≥ 4 and 2 ≤ s ≤ n
2 , then σs(Ch2(Pn)) is defective.

Proof.

Note that Ch2(Pn) = τ(ν2(Pn)), the tangential variety of the

Veronese variety of quadrics. The defective cases for its secant

varieties were identified in [CGG02].
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Conjecture

With the exception of the known defective cases, σs(Chd(Pn)) is

always nondefective.
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Known nondefective cases

Theorem

For the following n, d, s, σs(Chd(Pn)) is nondefective.

(a) n = 1, s = 2, d ≥ 3 and s ≤ 2
⌊
n+1
3

⌋
[CCGO17]

(b) s ≥
(
n+d−1

n

)
[CGG+19]

The above improved on some earlier results [AB11, Shi12].
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Terracini’s lemma

Lemma
For any n, d, s,

dimσs(Chd(Pn)) = dim

s∑
i=1

d∑
j=1

ℓi,1 · · · ℓi,j−1ℓi,j+1 · · · ℓi,dV − 1

for generic ℓi,j ∈ V .
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Abo-Ottaviani-Peterson induction

In [AOP09], an induction technique was developed for proving the

nondefectivity of many cases of σs(Pn1 × · · · × Pnk).
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Basic idea of induction

What happens if we specialize some of the linear forms from

Terracini’s lemma to be the basis element x0 of V , and the others

so that they belong to ⟨x1, . . . , xn⟩?

Then we may decompose the Terracini space into a direct sum:

W1 ⊕ x0W2 ⊕ x20W3

If each piece has the expected dimension (in (n− 1, d),

(n− 1, d− 1), and (n− 1, d− 2), resp.), then the entire space has

the expected dimension.

Drawback: Only works in subabundant case.
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Induction on n

Theorem ([Tor17])
If

dimσs(Chd(Pn0)) = s(dn0 + 1)− 1,

then

dimσs(Chd(Pn)) = s(dn+ 1)− 1

for all n ≥ n0.
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Computations

For fixed s, this reduces finding dimσs(Chd(Pn)) for all n, d to

checking finitely many base cases.

d

n
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12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s = 9

prev. known

check

induction
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Small s

Theorem ([Tor17])
If s ≤ 35, then

dimσs(Chd(Pn)) = min

{
s(dn+ 1),

(
n+ d

d

)}
− 1,

except for the previously known defective cases.
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Brambilla-Ottaviani induction

In [BO08], there is a new proof for the nondefectivity of

σs(ν3(Pn)) (n ̸= 4).

The s points are specialized onto up to 3 subspaces and induction

with a step size of 3 is used.
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How it works

Theorem (Newton backward difference formula)
If ∇ is the backward difference operator with step size ℓ, i.e.,

∇0s(t) = s(t) and ∇is(t) = ∇i−1s(t)−∇i−1s(t− ℓ), then

s(t) =

K∑
j=0

(
K

j

)
∇K−js(t− jℓ).

If we have K subspaces, then specialize ∇K−js(t− jℓ) points onto

each intersection of j of them.
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Visualization

∇3s(t)

∇2s(t− ℓ)∇2s(t− ℓ)

∇2s(t− ℓ)

s(t− 3ℓ)
∇1s(t− 2ℓ)

∇1s(t− 2ℓ)∇1s(t− 2ℓ)

P1(t)P2(t)

P3(t)
P ′(t)

•
•

•

•
•
•

•
••••

•

•••
•••

•
•

•

•
•
•

•
••

•
•
•
••••

•
•
•• •

•• ••
• •

•
••

••
••

•
•
•

17



Quasipolynomials

If s(t) = sr(t) ∈ Q[t] when t ≡ r (mod ℓ), r = 0, . . . , ℓ− 1, then s

is quasipolynomial with period ℓ.

Furthermore:

(a) If s is quasipolynomial with period ℓ, then ∇K−js(t− jℓ) will

be nice.

(b) s(n) =

⌊
(n+d

d )
dn+1

⌋
(fixing d) and s(d) =

⌊
(n+d

d )
dn+1

⌋
(fixing n) are

quasipolynomial
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Induction

If we have the expected dimension with

(a) i subspaces and n− ℓ+ 1 variables (or degree d− ℓ) and

(b) i+ 1 subspaces and n+ 1 variables (or degree d),

then we have the expected dimension with i subspaces and n+ 1

variables (or degree d)

Furthermore, if the degree of the quasipolynomial s is K − 1, and

we have the expected dimension with K subspaces and n+ 1

variables (or degree d), then we have the expected dimension with

more variables (or higher degree).

Just compute finitely many base cases (up to n ≤ Kℓ+ 1 or

d ≤ Kℓ+ 1), both subabundant and superabundant.
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Results

(a) n = 2 (ℓ = 4) [Abo14]

(b) n, d = 3 (gap, ℓ = 6) [Abo14]

(c) n = 3 (slightly smaller gap, ℓ = 9) [Tor13]

(d) n, d = 3 (ℓ = 27) [TV21]

The same technique was also used to prove the nondefectivity of

σs(τ(ν3(Pn))) (ℓ = 24) [AV18].
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Drawback

This doesn’t scale well. The K = 3, ℓ = 27 case required

computations involving vector spaces of dimension up to(
82+3
3

)
= 98,770.
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Identifiability

Theorem ([TV22])

Almost all f ∈ Sym3 V with subgeneric Chow rank admit a

unique Chow decomposition.

Proof.

[Oed12] Chd(Pn) is not 1-tangentially weakly defective

[CM22] r-identifiable for n ≥ 103, r ≤
⌊
(n+3

3 )
3n+1

⌋
− 1

Checked remaining cases with n ≤ 102.
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Combining the two techniques

Theorem ([Tor13])
Consider the function

c(n, d) = min

{⌊
s̃(d−m)

gn(m)

⌋
: 0 ≤ m ≤ n− 2

}
where

s̃(d) =


1
24

d2 + 1
12

d if d ≡ 0, 4 (mod 6)
1
24

d2 + 1
6
d− 5

24
if d ≡ 1 (mod 6)

1
24

d2 + 1
12

d− 1
3

if d ≡ 2 (mod 6)
1
24

d2 + 1
6
d+ 1

8
if d ≡ 3, 5 (mod 6)

and

gn(m) =


n− 3 if m = 0 or m = n− 3

n− 4 if n ≥ 5 and m = 1

1 if m = n− 2

m(n−m− 3) if 2 ≤ m ≤ n− 4

.

If d ≥ n and s ≤ 2n−3c(n, d), then σs(Chd(Pn)) is nondefective.

23



References i

Enrique Arrondo and Alessandra Bernardi.

On the variety parameterizing completely decomposable

polynomials.

J. Pure Appl. Algebra, 215(3):201–220, 2011.

Hirotachi Abo.

Varieties of completely decomposable forms and their

secants.

J. Algebra, 403:135–153, 2014.

Hirotachi Abo, Giorgio Ottaviani, and Chris Peterson.

Induction for secant varieties of Segre varieties.

Trans. Amer. Math. Soc., 361(2):767–792, 2009.

24



References ii

Hirotachi Abo and Nick Vannieuwenhoven.

Most secant varieties of tangential varieties to Veronese

varieties are nondefective.

Trans. Amer. Math. Soc., 370(1):393–420, 2018.

M. C. Brambilla and G. Ottaviani.

On the Alexander–Hirschowitz theorem.

J. Pure Appl. Algebra, 212(5):1229–1251, 2008.

Maria Virginia Catalisano, Luca Chiantini, Anthony V.

Geramita, and Alessandro Oneto.

Waring-like decompositions of polynomials, 1.

Linear Algebra Appl., 533:311–325, 2017.

25



References iii

M. V. Catalisano, A. V. Geramita, and A. Gimigliano.

On the secant varieties to the tangential varieties of a

Veronesean.

Proc. Amer. Math. Soc., 130(4):975–985, 2002.

M. V. Catalisano, A. V. Geramita, A. Gimigliano,

B. Harbourne, J. Migliore, U. Nagel, and Y. S. Shin.

Secant varieties of the varieties of reducible

hypersurfaces in Pn.

J. Algebra, 528:381–438, 2019.

Alex Casarotti and Massimiliano Mella.

From non-defectivity to identifiability.

Journal of the European Mathematical Society, 2022.

26



References iv

Luke Oeding.

Hyperdeterminants of polynomials.

Adv. Math., 231(3-4):1308–1326, 2012.

Yong Su Shin.

Secants to the variety of completely reducible forms and

the Hilbert function of the union of star-configurations.

J. Algebra Appl., 11(6):1250109, 27, 2012.

Douglas A. Torrance.

Nondefective secant varieties of completely

decomposable forms.
ProQuest LLC, Ann Arbor, MI, 2013.
Thesis (Ph.D.)–University of Idaho.

27



References v

Douglas A. Torrance.

Generic forms of low Chow rank.

J. Algebra Appl., 16(3):1750047, 10, 2017.

Douglas A. Torrance and Nick Vannieuwenhoven.

All secant varieties of the Chow variety are nondefective

for cubics and quaternary forms.

Trans. Amer. Math. Soc., 374(7):4815–4838, 2021.

Douglas A. Torrance and Nick Vannieuwenhoven.

Almost all subgeneric third-order Chow decompositions

are identifiable.

Ann. Mat. Pura Appl. (4), 201(6):2891–2905, 2022.

28


