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Chow varieties

Let V be a finite dimensional C-vector space. For a fixed d,

consider the map

Chg : P(V)*¢ — P(Sym? V)
([Ul], 500§ [Ud]) — [Ul 900 Ud]

The image of this map, which we denote Chy(P") if
dimV =n+ 1, is a Chow variety (of O-cycles), split variety, or
variety of complete decomposable (or reducible) forms.



Question

For a given n,d, s, what is dim o4(Chg(P"))?



Chow rank

For generic f € o4(Chgy(P™)),
f= Z&',l"'fi,d-
i=1

Computational complexity: This decomposition gives us an
efficient way of evaluating f.



Expected dimension

expdim oy (Chy(P")) = min {s(dn +1), <" ; d) } 1

s(dn+1) < (”jl'd) — subabundant

s(dn+1) > ("gd) — superabundant



Defective cases

Theorem
Ifn>4and2 < s <%, then o,(Chy(P")) is defective.

Proof.

Note that Cha(P") = 7(v2(P")), the tangential variety of the
Veronese variety of quadrics. The defective cases for its secant
varieties were identified in [CGG02].



Conjecture

With the exception of the known defective cases, o5(Chy(P")) is
always nondefective.



Known nondefective cases

Theorem
For the following n,d, s, os(Chy(P™)) is nondefective.
(a) n=1,s=2,d>3ands<2|™ ]| [CCGOI7]
(b) s> ("t [cGGT19]

The above improved on some earlier results [AB11, Shil2]



Terracini's lemma

Lemma
For any n,d, s,

dim o5(Chy(P")) dlmz ZEZ 1 lij1li i1 gV —1
i=1 j=1

for generic {; ; € V.



Abo-QOttaviani-Peterson induction

In [AOP09], an induction technique was developed for proving the
nondefectivity of many cases of o4(P"™ x -+ x P").
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Basic idea of induction

What happens if we specialize some of the linear forms from
Terracini’'s lemma to be the basis element zg of V', and the others
so that they belong to (z1,...,2,)?

Then we may decompose the Terracini space into a direct sum:
W1 @ xoWa @ z3W3
If each piece has the expected dimension (in (n — 1,d),

(n—1,d—1), and (n —1,d — 2), resp.), then the entire space has
the expected dimension.

Drawback: Only works in subabundant case.
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Induction on n

Theorem ([Torl7])
If

dim o5(Chy(P™)) = s(dng + 1) — 1,

then
dimos(Chy(P")) = s(dn+1) — 1

for all n > ng.
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Computations

For fixed s, this reduces finding dim o5(Chy(P™)) for all n,d to
checking finitely many base cases.
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8 . check
9
10 D induction
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Small s

Theorem ([Torl7])
If s < 35, then

dim . (Cha(®) = win { san + 1), (

n+d
d

except for the previously known defective cases.

)
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Brambilla-Ottaviani induction

In [BOO8], there is a new proof for the nondefectivity of

oy (v3(B™)) (n # 4).

The s points are specialized onto up to 3 subspaces and induction
with a step size of 3 is used.

ii5)



How it works

Theorem (Newton backward difference formula)
If V is the backward difference operator with step size ¢, i.e.,

VOs(t) = s(t) and Vis(t) = Vils(t) — Vi~ Lls(t — 1), then

:i< )vK Is(t — job).

J=

If we have K subspaces, then specialize VX ~Js(t — j¢) points onto
each intersection of j of them.
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Visualization
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Quasipolynomials

If s(t) = s,(t) € Qt] whent =7 (mod £), r =0,...,0—1, then s

is quasipolynomial with period /.
Furthermore:

(a) If s is quasipolynomial with period £, then VE=Is(t — jf) will
be nice.

(b) s(n) = {Eﬁ” s @) el o) = “f_fl)J (i) e

quasipolynomial
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Induction

If we have the expected dimension with

(a) i subspaces and n — £ + 1 variables (or degree d — ¢) and
(b) @+ 1 subspaces and n + 1 variables (or degree d),

then we have the expected dimension with ¢ subspaces and n + 1
variables (or degree d)

Furthermore, if the degree of the quasipolynomial s is K — 1, and
we have the expected dimension with K subspaces and n + 1
variables (or degree d), then we have the expected dimension with
more variables (or higher degree).

Just compute finitely many base cases (up ton < K¢+ 1 or
d < K¢+ 1), both subabundant and superabundant.
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Results

(a) n=2 (¢ =4) [Abol4]
(b) n,d =3 (gap, ¢ = 6) [Abol4]

(c) n =3 (slightly smaller gap, £ =9) [Torl3]
(d) n,d =3 (£ =27) [TV2]]

The same technique was also used to prove the nondefectivity of
os(T(v3(P™))) (¢ = 24) [AV18].
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Drawback

This doesn't scale well. The K = 3, £ = 27 case required
computations involving vector spaces of dimension up to
(*%F9) = 98,770.
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Identifiability

Theorem ([TV22])
Almost all f € Sym® V' with subgeneric Chow rank admit a
unique Chow decomposition.

Proof.
[Oed12] Chy(P™) is not 1-tangentially weakly defective

n+3
[CM22] r-identifiable for n > 103, r < {gnﬁJ -1

Checked remaining cases with n < 102.
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Combining the two techniques

Theorem ([Tor13])

Consider the function

Sd—
c(n,d):min{\‘uJ:OSmgn—2}
gn(m)
where L L
?dhr%ﬁd ifd=0,4 (mod 6)
S d? -2 ifd=1
5(d) = 214d2+61d 21 /'d_ (mod 6)
?d +%2d—1§ ifd=2 (mod 6)
A2+ gd+ 3 ifd=3,5 (mod 6)
and
n—3 ifm=0orm=n-—3
(m) = n—4 ifn>5andm=1
In )1 ifm=mn—2

m(n—m-—3) if2<m<n-—4

Ifd>mn and s < 2" 3¢(n,d), then o5(Chy(P™)) is nondefective.
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