

Induction and secant varieties to Chow varieties

Douglas A. Torrance

October 26, 2022, AGATES: Geometry of secants workshop

Piedmont University

Let V be a finite dimensional $\mathbb C\text{-vector}$ space. For a fixed d, consider the map

$$Ch_d : \mathbb{P}(V)^{\times d} \to \mathbb{P}(Sym^d V)$$
$$([v_1], \dots, [v_d]) \to [v_1 \cdots v_d]$$

The image of this map, which we denote $Ch_d(\mathbb{P}^n)$ if dim V = n + 1, is a *Chow variety* (of 0-cycles), *split variety*, or variety of complete decomposable (or reducible) forms.

Question

For a given n, d, s, what is $\dim \sigma_s(Ch_d(\mathbb{P}^n))$?

For generic $f \in \sigma_s(Ch_d(\mathbb{P}^n))$,

$$f = \sum_{i=1}^{s} \ell_{i,1} \cdots \ell_{i,d}.$$

Computational complexity: This decomposition gives us an efficient way of evaluating f.

Expected dimension

$$\operatorname{expdim} \sigma_s(\operatorname{Ch}_d(\mathbb{P}^n)) = \min\left\{s(dn+1), \binom{n+d}{d}\right\} - 1$$
$$s(dn+1) \le \binom{n+d}{d} \implies \text{subabundant}$$
$$s(dn+1) \ge \binom{n+d}{d} \implies \text{superabundant}$$

Theorem

If $n \ge 4$ and $2 \le s \le \frac{n}{2}$, then $\sigma_s(\operatorname{Ch}_2(\mathbb{P}^n))$ is defective.

Proof.

Note that $\operatorname{Ch}_2(\mathbb{P}^n) = \tau(\nu_2(\mathbb{P}^n))$, the tangential variety of the Veronese variety of quadrics. The defective cases for its secant varieties were identified in [CGG02].

With the exception of the known defective cases, $\sigma_s(\mathrm{Ch}_d(\mathbb{P}^n))$ is always nondefective.

Theorem

For the following n, d, s, $\sigma_s(Ch_d(\mathbb{P}^n))$ is nondefective.

(a)
$$n = 1, s = 2, d \ge 3$$
 and $s \le 2 \lfloor \frac{n+1}{3} \rfloor$ [CCG017]
(b) $s \ge \binom{n+d-1}{n}$ [CGG⁺19]

The above improved on some earlier results [AB11, Shi12].

Lemma

For any n, d, s,

$$\dim \sigma_s(\operatorname{Ch}_d(\mathbb{P}^n)) = \dim \sum_{i=1}^s \sum_{j=1}^d \ell_{i,1} \cdots \ell_{i,j-1} \ell_{i,j+1} \cdots \ell_{i,d} V - 1$$

for generic $\ell_{i,j} \in V$.

In [AOP09], an induction technique was developed for proving the nondefectivity of many cases of $\sigma_s(\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k})$.

What happens if we specialize some of the linear forms from Terracini's lemma to be the basis element x_0 of V, and the others so that they belong to $\langle x_1, \ldots, x_n \rangle$?

Then we may decompose the Terracini space into a direct sum:

 $W_1 \oplus x_0 W_2 \oplus x_0^2 W_3$

If each piece has the expected dimension (in (n-1,d), (n-1,d-1), and (n-1,d-2), resp.), then the entire space has the expected dimension.

Drawback: Only works in subabundant case.

Theorem ([Tor17])

$$\dim \sigma_s(\operatorname{Ch}_d(\mathbb{P}^{n_0})) = s(dn_0 + 1) - 1,$$

then

$$\dim \sigma_s(\mathrm{Ch}_d(\mathbb{P}^n)) = s(dn+1) - 1$$

for all $n \ge n_0$.

Computations

For fixed s, this reduces finding dim $\sigma_s(\operatorname{Ch}_d(\mathbb{P}^n))$ for all n, d to checking finitely many base cases.

Theorem ([Tor17]) If $s \le 35$, then $\dim \sigma_s(\operatorname{Ch}_d(\mathbb{P}^n)) = \min \left\{ s(dn+1), \binom{n+d}{d} \right\} - 1,$

except for the previously known defective cases.

In [BO08], there is a new proof for the nondefectivity of $\sigma_s(\nu_3(\mathbb{P}^n))$ $(n \neq 4)$.

The s points are specialized onto up to 3 subspaces and induction with a step size of 3 is used.

Theorem (Newton backward difference formula) If ∇ is the backward difference operator with step size ℓ , i.e., $\nabla^0 s(t) = s(t)$ and $\nabla^i s(t) = \nabla^{i-1} s(t) - \nabla^{i-1} s(t-\ell)$, then

$$s(t) = \sum_{j=0}^{K} {\binom{K}{j}} \nabla^{K-j} s(t-j\ell).$$

If we have K subspaces, then specialize $\nabla^{K-j}s(t-j\ell)$ points onto each intersection of j of them.

Visualization

If $s(t) = s_r(t) \in \mathbb{Q}[t]$ when $t \equiv r \pmod{\ell}$, $r = 0, \ldots, \ell - 1$, then s is quasipolynomial with period ℓ .

Furthermore:

(a) If s is quasipolynomial with period ℓ , then $\nabla^{K-j}s(t-j\ell)$ will be nice.

(b) $s(n) = \left\lfloor \frac{\binom{n+d}{d}}{dn+1} \right\rfloor$ (fixing d) and $s(d) = \left\lfloor \frac{\binom{n+d}{d}}{dn+1} \right\rfloor$ (fixing n) are quasipolynomial

Induction

If we have the expected dimension with

- (a) *i* subspaces and $n \ell + 1$ variables (or degree $d \ell$) and
- (b) i + 1 subspaces and n + 1 variables (or degree d),

then we have the expected dimension with i subspaces and n+1 variables (or degree $d\mbox{)}$

Furthermore, if the degree of the quasipolynomial s is K - 1, and we have the expected dimension with K subspaces and n + 1 variables (or degree d), then we have the expected dimension with more variables (or higher degree).

Just compute finitely many base cases (up to $n \le K\ell + 1$ or $d \le K\ell + 1$), both subabundant and superabundant.

(a)
$$n = 2$$
 ($\ell = 4$) [Abo14]
(b) $n, d = 3$ (gap, $\ell = 6$) [Abo14]
(c) $n = 3$ (slightly smaller gap, $\ell = 9$) [Tor13]
(d) $n, d = 3$ ($\ell = 27$) [TV21]

The same technique was also used to prove the nondefectivity of $\sigma_s(\tau(\nu_3(\mathbb{P}^n)))$ ($\ell = 24$) [AV18].

This doesn't scale well. The K = 3, $\ell = 27$ case required computations involving vector spaces of dimension up to $\binom{82+3}{3} = 98,770.$

Theorem ([TV22])

Almost all $f \in \text{Sym}^3 V$ with subgeneric Chow rank admit a unique Chow decomposition.

Proof.

[Oed12] $\operatorname{Ch}_d(\mathbb{P}^n)$ is not 1-tangentially weakly defective

[CM22] *r*-identifiable for $n \ge 103$, $r \le \left\lfloor \frac{\binom{n+3}{3}}{3n+1} \right\rfloor - 1$

Checked remaining cases with $n \leq 102$.

Combining the two techniques

Theorem ([Tor13])

Consider the function

$$c(n,d) = \min\left\{ \left\lfloor \frac{\tilde{s}(d-m)}{g_n(m)} \right\rfloor : 0 \le m \le n-2 \right\}$$

where

$$\tilde{s}(d) = \begin{cases} \frac{1}{24}d^2 + \frac{1}{12}d & \text{if } d \equiv 0, 4 \pmod{6} \\ \frac{1}{24}d^2 + \frac{1}{6}d - \frac{5}{24} & \text{if } d \equiv 1 \pmod{6} \\ \frac{1}{24}d^2 + \frac{1}{12}d - \frac{1}{3} & \text{if } d \equiv 2 \pmod{6} \\ \frac{1}{24}d^2 + \frac{1}{6}d + \frac{1}{8} & \text{if } d \equiv 3, 5 \pmod{6} \end{cases}$$

and

$$g_n(m) = \begin{cases} n-3 & \text{if } m = 0 \text{ or } m = n-3\\ n-4 & \text{if } n \ge 5 \text{ and } m = 1\\ 1 & \text{if } m = n-2\\ m(n-m-3) & \text{if } 2 \le m \le n-4 \end{cases}$$

If $d \ge n$ and $s \le 2^{n-3}c(n,d)$, then $\sigma_s(\mathrm{Ch}_d(\mathbb{P}^n))$ is nondefective.

References i

Enrique Arrondo and Alessandra Bernardi. On the variety parameterizing completely decomposable polynomials.

J. Pure Appl. Algebra, 215(3):201–220, 2011.

Hirotachi Abo.

Varieties of completely decomposable forms and their secants.

J. Algebra, 403:135-153, 2014.

Hirotachi Abo, Giorgio Ottaviani, and Chris Peterson.
 Induction for secant varieties of Segre varieties.
 Trans. Amer. Math. Soc., 361(2):767–792, 2009.

References ii

- Hirotachi Abo and Nick Vannieuwenhoven.
 Most secant varieties of tangential varieties to Veronese varieties are nondefective.
 Trans. Amer. Math. Soc., 370(1):393–420, 2018.
 M. C. Brambilla and G. Ottaviani.
 On the Alexander–Hirschowitz theorem.
 J. Pure Appl. Algebra, 212(5):1229–1251, 2008.
- Maria Virginia Catalisano, Luca Chiantini, Anthony V. Geramita, and Alessandro Oneto.

Waring-like decompositions of polynomials, 1.

Linear Algebra Appl., 533:311–325, 2017.

References iii

 M. V. Catalisano, A. V. Geramita, and A. Gimigliano.
 On the secant varieties to the tangential varieties of a Veronesean.

Proc. Amer. Math. Soc., 130(4):975-985, 2002.

- M. V. Catalisano, A. V. Geramita, A. Gimigliano,
 B. Harbourne, J. Migliore, U. Nagel, and Y. S. Shin.
 Secant varieties of the varieties of reducible
 hypersurfaces in Pⁿ.
 J. Algebra, 528:381–438, 2019.
 - Alex Casarotti and Massimiliano Mella. **From non-defectivity to identifiability.** Journal of the European Mathematical Society, 2022.

References iv

Luke Oeding.

Hyperdeterminants of polynomials.

Adv. Math., 231(3-4):1308-1326, 2012.

Yong Su Shin.

Secants to the variety of completely reducible forms and the Hilbert function of the union of star-configurations. *J. Algebra Appl.*, 11(6):1250109, 27, 2012.

Douglas A. Torrance.

Nondefective secant varieties of completely

decomposable forms.

ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–University of Idaho.

References v

Douglas A. Torrance.

Generic forms of low Chow rank.

- J. Algebra Appl., 16(3):1750047, 10, 2017.
- Douglas A. Torrance and Nick Vannieuwenhoven.
 All secant varieties of the Chow variety are nondefective for cubics and quaternary forms.
 Trans. Amer. Math. Soc., 374(7):4815–4838, 2021.
- Douglas A. Torrance and Nick Vannieuwenhoven.
 Almost all subgeneric third-order Chow decompositions are identifiable.

Ann. Mat. Pura Appl. (4), 201(6):2891–2905, 2022.