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Meet Gabriel. He likes toy trains.
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Toy trains and polyplets



Gabriel’s toy trains come with a variety of pieces of track.
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To simplify our question, let's suppose that we only have one type
of track piece in the shape of a quadrant, or quarter circle.
(Gabriel's tracks include lots of octants, or eighths of a circle.)

Our track is then an example of a spline, or a piecewise polynomial
curve. Specifically, a smooth closed regular quadrant spline.




The simplest example is merely a circle.
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In general, our quadrants all belong to kissing circles from a square
circle packing of the plane.

«40>» «Fr « >

!
v




We think of each circle containing a quadrant as a vertex in a
graph. And we color these vertices depending on whether they are
inside or outside of our spline.
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These graphs trace the boundaries of polyplets (or polykings or
pseudo-polyominos). They are formed by gluing together squares
at their edges or corners.

You're probably familiar with polyplets from, e.g., Conway's Game
of Life and Tetris.
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below are considered the same.

We want to enumerate them up to similarity, e.g., the splines
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Some polyplets correspond to more than one spline.

L-triomino or pre-block




And other polyplets result in disconnected splines.
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To get around these issues, we impose some conditions.
m We look at both possible vertex 2-colorings of the boundary of
each polyplet. These may be isomorphic.

m We only consider polyplets for which a vertex 2-coloring colors
all cut-vertices the same. These cut-vertices must correspond
to a circle inside the spline.

m As we only care about the boundary, we only consider
polyplets without holes.




splines.

O-plet:

1-plet:

We can now begin enumerating all smooth closed regular quadrant
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Proof. We use induction on n.

For the base case, the only spline corresponding to a O-plet is a
circle, which consists of 4 quadrants.
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Now suppose we add a square to an n-plet to form an (n + 1)-plet.
There are essentially two cases.

Case 1. We remove 1 quadrant and add 5, and so we increase the
total number of quadrants by 4.




total number of quadrants by 4.

Case 2. We remove 5 quadrants and add 1, and so we decrease the
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Why stop with quadrants and polyplets?

We can build trient splines using polyhexes.
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Or sextant splines using polyiamonds.

packings.

Beyond these, it gets ugly — we've run out of regular uniform circle
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Thank you!
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