Triangular and hexagonal Tangles

Douglas A. Torrance (w/ Rebecca Bowen and Sadie Pruitt)
March 10, 2023, MAA-SE, Coastal Carolina Univ.
Piedmont University

Tangles

A Tangle (named after the popular fidget toy) is a smooth closed plane curve made by gluing together arcs of circles with a common radius.

The existing literature is devoted to square Tangles, in which the arcs are all quarter circles like the toys.

Observation

The arcs in a square Tangle all belong to circles in a square circle packing, which corresponds to the square tiling of the plane.

Idea

There are two other regular tilings of the plane: by equilateral triangles and regular hexagons. Build Tangles using them!

We call a Tangle constructed from one of the three regular tilings a regular Tangle.

Dual polyforms

Every regular Tangle has a dual polyform, which consists of a connected union of polygons from the underlying tiling together with a 2 -coloring of its boundary (black $=$ inside, white $=$ outside).

- square Tangle ($\frac{1}{4}$-circle links) \longrightarrow dual pseudo-polyomino
- triangular Tangle $\left(\frac{1}{6}\right.$-circle links) \longrightarrow dual pseudo-polyiamond
- hexagonal Tangle ($\frac{1}{3}$-circle links) \longrightarrow dual polyhex

Size

The size of a regular Tangle is the number of polygons in its dual polyform.

On the previous slide, the Tangles have sizes 1, 2, and 1, resp.

Length

The length of a Tangle is the number of arcs (or links) that comprise it.

It is known that the length of a square Tangle is always a multiple of 4 [Fle00].

Question

What can we say about the lengths of triangular and hexagonal Tangles?

Area

The area enclosed by a square Tangle with size m and radius r is $(4 m+\pi) r^{2}$ [Bro08, Tor20].

Question

What can we say about the areas enclosed by triangular and hexagonal Tangles?

Hexagonal Tangle length

Theorem ([Bow20])
If a hexagonal Tangle has length n, then $n \equiv 3(\bmod 6)$.

The proof uses induction on the size m.
Base case. If $m=0$, then we have a circle, which has length 3 .

Inductive step

Add one hexagon to an existing dual polyhex to obtain a new dual polyhex. There are three cases:

1. (shear insertion) $+7-1=+6$ links
2. (reflection) $+4-4=+0$ links
3. (shear reduction) $1-7=-6$ links

Hexagonal Tangle area

Theorem

If a hexagonal Tangle has size m and radius r, then it encloses an area of $(6 \sqrt{3} m+\pi) r^{2}$.

We again use induction on m. When $m=0$, we have a circle with area πr^{2}. Each operation adds exactly the area of one hexagon $\left(6 \sqrt{3} r^{2}\right)$.

Triangular Tangles

Triangular Tangles are trickier:

- Boundaries of pseudo-polyiamonds are not necessarily 2-colorable.

- Some pseudo-polyiamonds correspond to singular curves.

Triangular Tangle operations

There are five basic operations on triangular Tangles that result from adding a pseudo-diamond to the dual pseudo-polyiamond. A triangular Tangle that can be obtained from a circle using only these operations is constructible.

Conjecture

Every triangular Tangle is constructible.

Triangular Tangle length

Theorem ([Pru20])

If a constructible triangular Tangle has length n, then n is even.

The proof uses induction on the size m.
Base case. If $m=0$, then we have a circle, which has length 6 .
Inductive step. Each of the five operations result in the addition or removal of an even number of links.

1. (diamond shear insertion) $+6-2=+4$ links
2. (diamond shear reduction) $+2-6=-4$ links
3. (butterfly shear insertion) $+5-3=+2$ links
4. (butterfly shear reduction) $+3-5=-2$ links
5. (reflection) $+4-4=+0$ links

Triangular Tangle area

Theorem

If a constructible triangular Tangle has size m and radius r, then it encloses an area of $(\sqrt{3} m+\pi) r^{2}$.

We again use induction on m. When $m=0$, we have a circle with area πr^{2}. Each operation (which increases the size by 2) adds exactly the area of two triangles $\left(\sqrt{3} r^{2}\right.$ each $)$.

Tangle font: http://erikdemaine.org/fonts/tangle/

References i

嗇 Rebecca M. Bowen.
Planar Trangles.
Piedmont College Journal of Mathematical Sciences, 2:3-9, 2020.

Rameron Browne.
Truchet curves and surfaces.
Computers \& Graphics, 32(2):268-281, 2008.
圊 Julian F. Fleron.
The geometry of model railroad train tracks and the topology of tangles: Glimpses into the mathematics of knot theory via children's toys.
Unpublished manuscript, 22000.

References ii

圊 Sadie Pruitt.
Pseudo-Polyiamonds and Hexgles.
Piedmont College Journal of Mathematical Sciences, 2:18-28, 2020.

Douglas A. Torrance.
Enumeration of planar Tangles.
Proc. Indian Acad. Sci. Math. Sci., 130(1):Paper No. 50, 12, 2020.

