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Waring’s Problem

Question

For a given d ∈ N, what is the smallest s ∈ N such that, for all
n ∈ N, there exist n1, . . . , ns ∈ Z such that

n = nd1 + · · ·+ nds ?

Example (Lagrange’s Four Square Theorem – 1770)

If d = 2, then s = 4.

Douglas A. Torrance University of Idaho

Nondefective secant varieties of varieties of completely decomposable forms



Outline Introduction Important Tool Known results Techniques Results

Waring’s Problem for polynomials

Let k be an algebraically closed field of characteristic 0 and let
R = k[x0, . . . , xn]. Let Rd denote the homogeneous polynomials of
degree d in R.

Question

For a given d ∈ N, what is the smallest s ∈ N such that, for any
generic f ∈ Rd , there exist `1, . . . , `s ∈ R1 such that

f = `d1 + · · ·+ `ds ?

This question was answered by Alexander and Hirschowitz in a
series of papers from 1992–5.
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Another Waring’s Problem for polynomials

We say that f ∈ Rd is completely decomposable if f = `1 · · · `d ,
where `i ∈ R1 for all i .
We can therefore generalize the Waring’s Problem for polynomials
in the following way:

Question

For a given d ∈ N, what is the smallest s ∈ N such that, for any
generic f ∈ Rd , there exist completely decomposable
f1, . . . , fs ∈ Rd such that

f = f1 + · · ·+ fs?
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Varieties of completely decomposable forms

Definition

A variety of completely decomposable forms or Chow variety of
zero cycles is a variety of the form

Splitd(Pn) = {[f ] ∈ PRd : f is completely decomposable}

Note that Splitd(Pn) ⊂ P(n+d
d )−1.
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Secant varieties

Definition

Let X ⊂ PV be a variety. The sth secant variety of X is

σs(X ) =
⋃
{〈p1, . . . , ps〉 : p1, . . . , ps ∈ X}

Here, · denotes Zariski closure and 〈·〉 denotes linear span.
Note that some other authors use σs−1(X ) instead.
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Waring problem, revisited

We can now reframe our original question:

Question

For a given d ∈ N, what is the smallest s ∈ N such that
dimσs(Splitd(Pn)) =

(n+d
d

)
− 1?
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Big question

Question

What is dimσs(Splitd(Pn))?.

Note that

dimσs(Splitd(Pn)) ≤ expdimσs(Splitd(Pn))

= min

{
s(dn + 1),

(
n + d

d

)}
− 1

If dimσs(Splitd(Pn)) = expdimσs(Splitd(Pn)), the variety is
nondefective and we are done. Otherwise, it is defective. We may
rephrase our question:

Question

When is σs(Splitd(Pn)) defective?
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Calculating dimension using Terracini’s lemma

Lemma (Terracini – 1911)

Choose s generic points p1, . . . , ps on a projective variety X . Then,
for a generic point q ∈ 〈p1, . . . , ps〉,

Tqσs(X ) = 〈Tp1X , . . . ,TpsX 〉

Note that, for a generic f = `1 · · · `d , `i ∈ R1, we have

T̂[f ] Splitd(Pn) =
d∑

j=1

`1 · · · `j−1`j+1 · · · `dR1

So calculating the dimension of our variety is equivalent to
calculating the dimension of a vector space.
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Terracini’s lemma example

Suppose we want to calculate the dimension of σ2(Split3(P5)). We
choose the tangent spaces to the points [x0x1x2] and [x3x4x5].
Then we just need to find the dimension of the vector space

x0x1R1 + x0x2R1 + x1x2R1 + x3x4R1 + x3x5R1 + x4x5R1,

which can be calculated by finding the rank of a 56× 32 matrix.
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Conjecture

Conjecture (Arrondo, Bernardi – 2011)

The secant variety σs(Splitd(Pn)) is defective if and only if d = 2
and 2 ≤ s ≤ n

2 .

The ⇐ direction can be proven using Terracini’s lemma.
The ⇒ direction is far more difficult.
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Known results

Theorem

If any of the following are true, then σs(Splitd(Pn)) is
nondefective.

n = 1 or d = 1 (trivial cases)

d = 2 and s > n
2 (application of Terracini’s lemma)

d ≥ 3 and n ≥ 3(s − 1) (Arrondo-Bernardi – 2011)

n = 2 (Shin – 2011, Abo – 2012)

n = 3, s ≤ s1(d) or s ≥ s2(d) for some functions s1, s2 (Abo
– 2012)

d = 3, s ≤ s1(n) or s ≥ s2(n) for these same functions (Abo –
2012)

Can we fill in the gaps?
Douglas A. Torrance University of Idaho

Nondefective secant varieties of varieties of completely decomposable forms



Outline Introduction Important Tool Known results Techniques Results

Splitting induction

We use two methods of induction. In the first, we use the fact that

Rd = x0Rd−1 ⊕ SdU

where U = span{x1, . . . , xn}
In particular, we look at specialized points in Splitd(Pn), and split
the vector space from Terracini’s lemma into the direct sum of
smaller vector spaces.
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Splitting induction example

For example, consider our σ2(Split3 P5) example from above.

x0x1R1 + x0x2R1 + x1x2R1 + x3x4R1 + x3x5R1 + x4x5R1

= (x1x2U + x3x4U + x3x5U + x4x5U)

⊕ x0(x1U + x2U + span{x3x4, x3x5, x4x5})
⊕ x20 span{x1, x2}

We need only find the dimensions of each direct summand.
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Restriction induction

Recall that the vector space we use to calculate the dimension of
the secant varieties is a sum of tangent spaces at specific points.
We restrict these points to smaller varieties of completely
decomposable forms (either less variables or smaller degree), and
use the dimensions of these smaller cases to find the dimension of
the larger case.

P1

P1
P2

P1
P2 P3
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n = 3

Theorem (Torrance – 2013)

Let

s1(d) =


1
18d

2 + 5
18d if d ≡ 0, 4 (mod 9)

1
18d

2 + 5
18d + 2

9 if d ≡ 2, 5, 8 (mod 9)
1
18d

2 + 5
18d + 2

3 if d ≡ 1, 3 (mod 9)
1
18d

2 + 5
18d + 1

3 if d ≡ 6, 7 (mod 9)

s2(d) =



1
18d

2 + 1
3d + 1 if d ≡ 0 (mod 6)

1
18d

2 + 1
3d + 1

2 if d ≡ 3 (mod 6)
1
18d

2 + 7
18d + 5

9 if d ≡ 1, 4, 7 (mod 9)
1
18d

2 + 7
18d + 1 if d ≡ 2 (mod 9)

1
18d

2 + 7
18d + 2

3 if d ≡ 5 (mod 9)
1
18d

2 + 7
18d + 1

3 if d ≡ 8 (mod 9)

If s ≤ s1(d) or s ≥ s2(d), then σs(Splitd(P3)) is nondefective for all
d ∈ N.
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n = 3 Proof

Proof. The s1 and s2 functions are as close as possible to
(n+d

d )
dn+1 ,

the point at which a secant variety switches from subabundant
(not expected to fill the ambient space) to superabundant
(expected to fill the ambient space), while still allowing restriction
induction to be used with a relatively small step size. The base
cases were confirmed in Macaulay2.
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n ≥ 4

Theorem (Torrance – 2013)

Consider the function

c(n, d) = min

{⌊
s̃(d −m)

gn(m)

⌋
: 0 ≤ m ≤ n − 2

}
where

s̃(d) =


1
24
d2 + 1

12
d if d ≡ 0, 4 (mod 6)

1
24
d2 + 1

6
d − 5

24
if d ≡ 1 (mod 6)

1
24
d2 + 1

12
d − 1

3
if d ≡ 2 (mod 6)

1
24
d2 + 1

6
d + 1

8
if d ≡ 3, 5 (mod 6)

and

gn(m) =


n − 3 if m = 0 or m = n − 3
n − 4 if n ≥ 5 and m = 1
1 if m = n − 2
m(n −m − 3) if 2 ≤ m ≤ n − 4

.

If d ≥ n and s ≤ max{s1(d), 2n−3c(n, d)}, then σs(Splitd (Pn)) is nondefective.
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n ≥ 4 Proof

Proof. Splitting induction can be used to extend the subabundant
case from the previous theorem to n ≥ 4, giving the s ≤ s1(d)
bound.
Also, if d � n, we may use splitting induction to split a vector
space into a number of smaller vector spaces with n = 3. We can
then use restriction induction to find the dimensions of these
vector spaces, which in turn tells us the dimension of the original
vector space. This gives us the s ≤ 2n−3c(n, d) bound.
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Comparison of results

The following graph shows these two bounds as compared with the
known bound of Arrondo and Bernardi.
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Small s

Theorem (Torrance – 2013)

If s ≤ 30, then σs(Splitd(Pn)) is nondefective for all n, d ∈ N
unless d = 2 and n ≥ 2s.
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Small s Proof

Proof. After applying the above
results, there exist only finitely
many cases to check for any
fixed s. Each case was checked
in Macaulay2, for as large an s
as possible.

d

n

nondefective
defective
check in M2
induction
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Thank you!

Alessandro Terracini
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