An exponential bound for nondefective secant varieties of Chow varieties

Douglas A. Torrance
March 18, 2023
AMS Spring Southeastern Sectional Meeting, Georgia Tech
Piedmont University

## Chow varieties

Let $V$ be a finite dimensional $\mathbb{C}$-vector space. For a fixed $d$, consider the map

$$
\begin{aligned}
\mathrm{Ch}_{d}: \mathbb{P}(V)^{\times d} & \rightarrow \mathbb{P}\left(\operatorname{Sym}^{d} V\right) \\
\left(\left[\ell_{1}\right], \ldots,\left[\ell_{d}\right]\right) & \rightarrow\left[\ell_{1} \cdots \ell_{d}\right]
\end{aligned}
$$

The image of this map, which we denote $\mathrm{Ch}_{d}\left(\mathbb{P}^{n}\right)$ if $\operatorname{dim} V=n+1$, is a Chow variety (of 0-cycles), split variety, or variety of complete decomposable (or reducible) forms.

## Secant varieties

Given a projective variety $X$ and nonnegative $r \in \mathbb{Z}$, the sth secant variety of $X$ is

$$
\sigma_{s}(X)=\overline{\left\{\left\langle p_{1}, \ldots, p_{s}\right\rangle: p_{1}, \ldots, p_{s} \in X\right\}}
$$

For the smallest $s$ such that $\sigma_{s}\left(\mathrm{Ch}_{d}\left(\mathbb{P}^{n}\right)\right)=\mathbb{P}\left(\operatorname{Sym}^{d} V\right)$,

$$
f=\sum_{i=1}^{s} \ell_{i, 1} \cdots \ell_{i, d}
$$

for all generic $(n+1)$-ary $d$-ics $f$.
Computational complexity: This decomposition gives us an efficient way of evaluating $f$.

## Conjecture

For all $n, d, s$,

$$
\operatorname{dim} \sigma_{s}\left(\mathrm{Ch}_{d}\left(\mathbb{P}^{n}\right)\right)=\min \left\{s(d n+1),\binom{n+d}{d}\right\}-1
$$

except for the cases $d=2, n \geq 4,2 \leq s \leq \frac{n}{2}$.

## Terracini's lemma

## Lemma

For any $n, d, s$,

$$
\operatorname{dim} \sigma_{s}\left(\operatorname{Ch}_{d}\left(\mathbb{P}^{n}\right)\right)=\operatorname{dim} \sum_{i=1}^{s} \sum_{j=1}^{d} \ell_{i, 1} \cdots \ell_{i, j-1} \ell_{i, j+1} \cdots \ell_{i, d} V-1
$$

for generic $\ell_{i, j} \in V$.

## Induction techniques

Abo-Ottaviani-Peterson induction
Theorem (- (2017))
Except for the known defective cases, $\sigma_{s}\left(\mathrm{Ch}_{d}\left(\mathbb{P}^{n}\right)\right)$ has the expected dimension if $s \leq 35$.

Brambilla-Ottaviani induction
Theorem (-, Vannieuwenhoven (2021))
Except for the known defective cases, $\sigma_{s}\left(\mathrm{Ch}_{d}\left(\mathbb{P}^{n}\right)\right)$ has the expected dimension if $n=3$ or $d=3$.

## Combining the two techniques

## Theorem (-)

Consider the function

$$
c(n, d)=\min \left\{\left\lfloor\frac{s(d-m)}{g_{n}(m)}\right\rfloor: 0 \leq m \leq n-2\right\}
$$

where

$$
s(d)= \begin{cases}\frac{1}{24} d^{2}+\frac{1}{12} d & \text { if } d \equiv 0,4 \quad(\bmod 6) \\ \frac{1}{24} d^{2}+\frac{1}{6} d-\frac{5}{24} & \text { if } d \equiv 1 \quad(\bmod 6) \\ \frac{1}{24} d^{2}+\frac{1}{12} d-\frac{1}{3} & \text { if } d \equiv 2 \quad(\bmod 6) \\ \frac{1}{24} d^{2}+\frac{1}{6} d+\frac{1}{8} & \text { if } d \equiv 3,5 \quad(\bmod 6)\end{cases}
$$

and

$$
g_{n}(m)=\left\{\begin{array}{ll}
n-3 & \text { if } m=0 \text { or } m=n-3 \\
n-4 & \text { if } n \geq 5 \text { and } m=1 \\
1 & \text { if } m=n-2 \\
m(n-m-3) & \text { if } 2 \leq m \leq n-4
\end{array} .\right.
$$

If $d \geq n \geq 4$ and $s \leq 2^{n-3} c(n, d)$, then $\sigma_{s}\left(\mathrm{Ch}_{d}\left(\mathbb{P}^{n}\right)\right)$ is nondefective.

## Proof idea



## Thank you!

https://webwork.piedmont.edu/~dtorrance/research


