

Douglas A. Torrance based on work w/ Rebecca Bowen and Sadie Pruitt February 28, 2025, MAA-SE, High Point University

Piedmont University

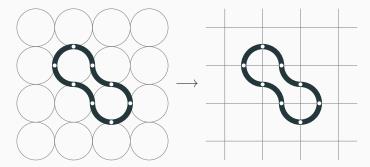
Tangles

A **Tangle** (named after the popular fidget toy) is a smooth $(C^1$, piecewise C^{∞}) closed plane curve made by gluing together arcs of circles with a common radius (which we call *links* of the Tangle).

The Tangle toy is made of quarter circle links, but we can use other proportions as well!

Observation

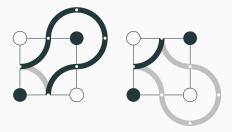
The links of a Tangle all belong to circles in a *circle packing* of the plane, which corresponds to a *tiling* of the plane.



There are 11 tilings of the plane by convex regular polygons (square, hexagonal, triangular, and 8 more *semiregular* tilings). All give rise to families of Tangles!

Fundamental operations

For each family of Tangles, we identify a set of *fundamental operations*, each of which involves the addition of polygon(s) from the underlying tiling.



Shear insertion and shear reduction, the two fundamental operations on square Tangles.

A Tangle is *constructible* if it may be constructed from a circle using a sequence of fundamental operations.

constructible Tangles \implies use induction for interesting results!

Theorem (Bowen, Pruitt, T.)

If a constructible Tangle has radius r, length ℓ , and size m, and encloses area A, then

- (square) $\ell \equiv 0 \pmod{4}$, $A = (4m + \pi)r^2$
- (hexagonal) $\ell \equiv 3 \pmod{6}$, $A = (6\sqrt{3}m + \pi)r^2$
- (triangular) $\ell \equiv 0 \pmod{2}$, $A = (\sqrt{3}m + \pi)r^2$

- square yes!
- hexagonal yes!
- triangular maybe??

Gauss-Bonnet theorem

Theorem (Gauss-Bonnet)

If M is a compact 2-manifold with Gaussian curvature K and Euler characteristic $\chi(M)$ and ∂M is its boundary with geodesic curvature k_g , then

$$\iint_M K \, dA + \oint_{\partial M} k_g \, ds = 2\pi \chi(S).$$

Very special case: the angles in a triangle sum to 180°.

Theorem (T.)

Suppose $0 < p_i < 1$ for all i = 1, ..., r. If all the links of a Tangle are p_i -circles for some i, and if for each i there are d_i more convex p_i -links than concave p_i -links, then

$$p_1d_1 + \dots + p_rd_r = 1.$$

Proof

Let M be the interior of the Tangle. Since $M\subset \mathbb{R}^2,\,K=0$ and $\chi(M)=1.$

Each link has geodesic curvature $\pm \frac{1}{r}$ (+: convex, -: concave). So Gauss-Bonnet gives us

$$\iint_{M} 0 \, dA + \sum_{i=1}^{r} d_i \oint_{p_i \text{-link}} \frac{1}{r} \, ds = 2\pi \cdot 1$$
$$\sum_{i=1}^{r} d_i \cdot \frac{1}{r} \cdot 2\pi r p_i = 2\pi$$
$$\sum_{i=1} p_i d_i = 1$$

Gauss-Bonnet theorem for regular Tangles (r = 1)

tiling	p_1	d_1
square [Fleron]	$\frac{1}{4}$	4
hexagonal	$\frac{1}{3}$	3
triangular	$\frac{1}{6}$	6

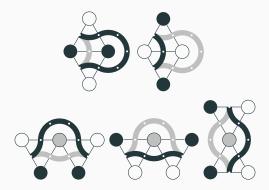
Gauss-Bonnet theorem for semiregular Tangles (r = 2)

tiling	(p_1, p_2)	(d_1, d_2)
snub square, elongated triangular	$\left(\frac{1}{6},\frac{1}{4}\right)$	(0,4), $(3,2)$, $(6,0)$
trihexagonal, snub hexagonal	$\left(\frac{1}{6},\frac{1}{3}\right)$	(0,3), $(2,2)$,
		(4,1), $(6,0)$
truncated hexagonal	$\left(\frac{1}{6},\frac{5}{12}\right)$	(1,2), $(6,0)$
truncated square	$\left(\frac{1}{4},\frac{3}{8}\right)$	(1,2), $(4,0)$

Gauss-Bonnet theorem for semiregular Tangles (r = 3)

tiling	(p_1, p_2, p_3)	(d_1, d_2, d_3)
rhombitrihexagonal	$\left(\frac{1}{6},\frac{1}{4},\frac{1}{3}\right)$	(0,0,3), $(0,4,0)$,
		(1,2,1), $(2,0,2)$,
		(3,2,0), $(4,0,1)$,
		(6, 0, 0)
truncated trihexagonal	$\left(\frac{1}{4},\frac{1}{3},\frac{5}{12}\right)$	(0,3,0), $(1,1,1)$,
		(4, 0, 0)

Triangular Tangle fundamental operations



4-bulb shear insertion (top left), 4-bulb shear reduction (top right),3-bulb shear insertion (bottom left), 3-bulb shear reduction (bottom center), reflection (bottom right)

Triangular Tangles are constructible (step 1)

If there exist non-constructible triangular Tangles, then there exists one of minimal length.

It can't have a 4-bulb, or otherwise we can construct it from a constructible Tangle via 4-bulb shear insertion.

Triangular Tangles are constructible (step 2)

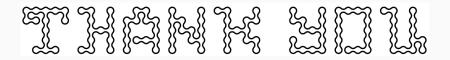
It can't have a 3-bulb, or otherwise we can construct it from a construcible Tangle via 3-bulb shear insertion.

Triangular Tangles are constructible (step 3)

It can't contain a 2-bulb that could be obtained via reflection from a constructible Tangle

Triangular Tangles are constructible (step 4)

So our Tangle must contain only 1-bulbs or 2-bulbs like the one shown above. It follows that we must have at least as many concave links as convex links, contradicting Gauss-Bonnet.



Tangle font: http://erikdemaine.org/fonts/tangle/

https://webwork.piedmont.edu/~dtorrance/research