Properties of complete bipartite codimension two subspace arrangements

Zach Teitler<sup>1</sup> Douglas A. Torrance<sup>2</sup>

<sup>1</sup>Boise State University

<sup>2</sup>Monmouth College

January 15, 2014

## Linear subspace arrangements

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let  $\Bbbk$  be a field. A **linear subspace** of  $\mathbb{P}^n$  is a variety V(I) where  $I \subset R = \Bbbk[x_0, \ldots, x_n]$  is an ideal generated by linear forms. If a linear subspace has dimension d, then we may call it a d-plane. Let  $\mathcal{A}$  be an arrangement of linear subspaces. We define

$$V_{\mathcal{A}} = \bigcup_{X \in \mathcal{A}} X$$

$$I_{\mathcal{A}} = \bigcap_{X \in \mathcal{A}} I(X) = I(V_{\mathcal{A}}).$$

# Minimal graded free resolutions and graded Betti numbers

Given a graded ideal I, consider a minimal graded free resolution

$$0 \to F_{\rho} \xrightarrow{\varphi_{\rho}} F_{\rho-1} \xrightarrow{\varphi_{\rho-1}} \cdots \to F_{1} \xrightarrow{\varphi_{1}} F_{0} \xrightarrow{\varphi_{0}} I \to 0$$

For each *i*,  $F_i$  is a **graded free module**, i.e.,  $F_i \cong \bigoplus_j R(d_j)$ Definition

The graded Betti numbers of I are

$$\beta_{i,j} = \#$$
 of copies of  $R(-j)$  in  $F_i$ 

## Betti tables

(ロ)、(型)、(E)、(E)、 E) の(()

We may list all the graded Betti numbers of a minimal graded free resolution using a **Betti table**:

| 0             | 1               | • • •                                                                                                                               | i               | • • • |
|---------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|
|               |                 |                                                                                                                                     |                 |       |
| $\beta_{0,1}$ | $\beta_{1,2}$   |                                                                                                                                     | $\beta_{i,i+1}$ |       |
| $\beta_{0,2}$ | $\beta_{1,3}$   |                                                                                                                                     | $\beta_{i,i+2}$ |       |
|               |                 |                                                                                                                                     |                 |       |
| $\beta_{0,j}$ | $\beta_{1,j+1}$ |                                                                                                                                     | $\beta_{i,i+j}$ |       |
|               |                 |                                                                                                                                     |                 |       |
|               |                 | $ \begin{array}{c ccc} 0 & 1 \\ \beta_{0,1} & \beta_{1,2} \\ \beta_{0,2} & \beta_{1,3} \\ \beta_{0,j} & \beta_{1,j+1} \end{array} $ |                 |       |

## Regularity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Definition 1 The (Castlenuovo-Mumford) regularity of a graded ideal *I* is

reg 
$$I = \max\{j : \beta_{i,i+j} \neq 0 \text{ for some } i\}$$

Note that this is the index of the last nonzero row of the Betti table.

#### Definition 2

If *I* is the ideal of a variety, this is equivalent to the following definition using the cohomology of the ideal sheaf.

$$\operatorname{reg} I = \min\{j : h^{i}(\mathbb{P}^{n}, \tilde{I}(j-i)) = 0 \,\,\forall i > 0\}$$

## Our question

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let  $\mathcal{A}$  be a subspace arrangement. What is the Castelnuovo-Mumford regularity of  $I_{\mathcal{A}}$ ?

## What is known

## Theorem (Derksen, Sidman (2002)) If A is a linear subspace arrangement, then

$$\mathsf{reg}\, \mathit{I}_{\mathcal{A}} \leq |\mathcal{A}|$$

This bound is sharp. For example, an arrangement of d skew lines intersecting a line L (which is not in the arrangement) in d distinct points will have a regularity of d. The Betti table for for the case of 5 such lines in  $\mathbb{P}^3$  is given below.

$$\begin{array}{c|ccccc}
0 & 1 \\
\hline
3 & 1 & . \\
4 & 6 & 9 \\
5 & 9 & 2
\end{array}$$

## Incidence graphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Suppose  $\mathcal{A}$  is a subspace arrangement in  $\mathbb{P}^n$ .

## Definition

The **incidence graph** of A is the graph  $\Gamma(A)$  such that

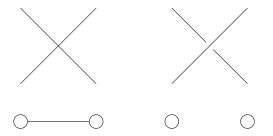
• 
$$V(\Gamma(\mathcal{A})) = \mathcal{A}$$

•  $E(\Gamma(\mathcal{A})) = \{XY : \dim(X \cap Y) > \operatorname{expdim}(X \cap Y)\}.$ 

## Lines in $\mathbb{P}^3$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Two lines in  $\mathbb{P}^3$  can either intersect in a point or not at all.



Note that the example we saw of d lines with regularity d above has incidence graph  $dK_1$ , i.e., no edges.

What happens to the regularity when we impose more structure?

## Complete bipartite graphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### Definition

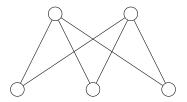
A graph G = (V, E) is the complete bipartite graph  $K_{a,b}$  if

• 
$$V = V_1 \cup V_2$$
 where  $|V_1| = a$  and  $|V_2| = b$ .

- If  $u, v \in V_1$  or  $u, v \in V_2$ , then  $uv \notin E$ .
- If  $u \in V_1$  and  $v \in V_2$  or vice versa, then  $uv \in E$ .

#### Example

The complete bipartite graph  $K_{2,3}$  is as follows:



## Question

#### If $\Gamma(\mathcal{A}) = K_{a,b}$ with $a \leq b$ , then what is reg $I_{\mathcal{A}}$ ?

## Example 1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Using Macaulay 2, we can construct (n-2)-plane arrangements with the desired incidence graphs.

If n = 3 and  $\Gamma(A) = K_{3,3}$ , then  $I_A$  has the following Betti table:

## Example 2

・ロト・(型ト・(型ト・(型ト))

If n = 3 and  $\Gamma(\mathcal{A}) = K_{5,10}$ , then  $I_{\mathcal{A}}$  has the following Betti table:

|                          | 0 | 1  | 2 |  |  |
|--------------------------|---|----|---|--|--|
| 2                        | 1 |    | • |  |  |
| 2<br>3<br>4<br>5<br>6    |   |    |   |  |  |
| 4                        |   |    |   |  |  |
| 5                        |   |    |   |  |  |
| 6                        |   |    |   |  |  |
| 7                        |   |    |   |  |  |
| 8                        |   |    |   |  |  |
| 9                        |   |    |   |  |  |
| 10                       | 6 | 10 | 4 |  |  |
| reg $I_{\mathcal{A}}=10$ |   |    |   |  |  |

## The result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Theorem

If  $\Gamma(\mathcal{A}) = K_{a,b}$  with  $a \le b \le$ ,  $a \le b \le 3$ , or  $3 \le a \le b$ , then reg  $I_{\mathcal{A}} = \max\{a+1, b\}$ .

Sketch of proof. Suppose  $\mathcal{A}$  is a line arrangement in  $\mathbb{P}^3$ . Then  $\mathcal{A}$  consists of rulings of a quadric surface Q.



## Sketch of proof, cont.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The result follows from computing cohomologies using the exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^3}(-2) \stackrel{\cdot Q}{\longrightarrow} \widetilde{I_{\mathcal{A}}} \to \mathcal{I}_{V_{\mathcal{A}} \cap Q,Q} \to 0$$

For n > 3, it can be shown that  $V_A$  is a cone over a line arrangement in  $\mathbb{P}^3$  with the same incidence graph, and therefore it has the same regularity.

## Arithmetic Cohen-Macaulayness

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The sheaf cohomology calculations used to prove the above result can also be used to prove the following result.

#### Theorem

If  $\Gamma(\mathcal{A}) = K_{a,b}$  with  $a \leq b \leq$ ,  $a \leq b \leq 3$ , or  $3 \leq a \leq b$ , then  $V_{\mathcal{A}}$  is arithmetically Cohen-Macaulay if and only if  $b \in \{a, a + 1\}$ .

## Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



Ennie Betti