Properties of complete bipartite codimension two subspace arrangements

Zach Teitler ${ }^{1}$ Douglas A. Torrance ${ }^{2}$

${ }^{1}$ Boise State University
${ }^{2}$ Monmouth College

January 15, 2014

Linear subspace arrangements

Let \mathbb{k} be a field. A linear subspace of \mathbb{P}^{n} is a variety $V(I)$ where $I \subset R=\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ is an ideal generated by linear forms. If a linear subspace has dimension d, then we may call it a d-plane. Let \mathcal{A} be an arrangement of linear subspaces. We define

$$
\begin{gathered}
V_{\mathcal{A}}=\bigcup_{X \in \mathcal{A}} X \\
I_{\mathcal{A}}=\bigcap_{X \in \mathcal{A}} I(X)=I\left(V_{\mathcal{A}}\right) .
\end{gathered}
$$

Minimal graded free resolutions and graded Betti numbers

Given a graded ideal I, consider a minimal graded free resolution

$$
0 \rightarrow F_{p} \xrightarrow{\varphi_{p}} F_{p-1} \xrightarrow{\varphi_{p-1}} \cdots \rightarrow F_{1} \xrightarrow{\varphi_{1}} F_{0} \xrightarrow{\varphi_{0}} I \rightarrow 0
$$

For each i, F_{i} is a graded free module, i.e., $F_{i} \cong \bigoplus_{j} R\left(d_{j}\right)$
Definition
The graded Betti numbers of I are

$$
\beta_{i, j}=\# \text { of copies of } R(-j) \text { in } F_{i}
$$

Betti tables

We may list all the graded Betti numbers of a minimal graded free resolution using a Betti table:

	0	1	\cdots	i	\cdots
\vdots					
1	$\beta_{0,1}$	$\beta_{1,2}$		$\beta_{i, i+1}$	
2	$\beta_{0,2}$	$\beta_{1,3}$		$\beta_{i, i+2}$	
\vdots					
j	$\beta_{0, j}$	$\beta_{1, j+1}$		$\beta_{i, i+j}$	
\vdots					

Regularity

Definition 1

The (Castlenuovo-Mumford) regularity of a graded ideal I is

$$
\operatorname{reg} I=\max \left\{j: \beta_{i, i+j} \neq 0 \text { for some } i\right\}
$$

Note that this is the index of the last nonzero row of the Betti table.

Definition 2

If I is the ideal of a variety, this is equivalent to the following definition using the cohomology of the ideal sheaf.

$$
\operatorname{reg} I=\min \left\{j: h^{i}\left(\mathbb{P}^{n}, \tilde{l}(j-i)\right)=0 \forall i>0\right\}
$$

Our question

Let \mathcal{A} be a subspace arrangement. What is the Castelnuovo-Mumford regularity of $I_{\mathcal{A}}$?

What is known

Theorem (Derksen, Sidman (2002))
If \mathcal{A} is a linear subspace arrangement, then

$$
\operatorname{reg} I_{\mathcal{A}} \leq|\mathcal{A}|
$$

This bound is sharp. For example, an arrangement of d skew lines intersecting a line L (which is not in the arrangement) in d distinct points will have a regularity of d. The Betti table for for the case of 5 such lines in \mathbb{P}^{3} is given below.

	0	1
3	1	.
4	6	9
5	9	2

Incidence graphs

Suppose \mathcal{A} is a subspace arrangement in \mathbb{P}^{n}.

Definition

The incidence graph of \mathcal{A} is the graph $\Gamma(\mathcal{A})$ such that

- $V(\Gamma(\mathcal{A}))=\mathcal{A}$
- $E(\Gamma(\mathcal{A}))=\{X Y: \operatorname{dim}(X \cap Y)>\operatorname{expdim}(X \cap Y)\}$.

Lines in \mathbb{P}^{3}

Two lines in \mathbb{P}^{3} can either intersect in a point or not at all.

Note that the example we saw of d lines with regularity d above has incidence graph $d K_{1}$, i.e., no edges.
What happens to the regularity when we impose more structure?

Complete bipartite graphs

Definition

A graph $G=(V, E)$ is the complete bipartite graph $K_{a, b}$ if

- $V=V_{1} \cup V_{2}$ where $\left|V_{1}\right|=a$ and $\left|V_{2}\right|=b$.
- If $u, v \in V_{1}$ or $u, v \in V_{2}$, then $u v \notin E$.
- If $u \in V_{1}$ and $v \in V_{2}$ or vice versa, then $u v \in E$.

Example

The complete bipartite graph $K_{2,3}$ is as follows:

Question

If $\Gamma(\mathcal{A})=K_{a, b}$ with $a \leq b$, then what is $\operatorname{reg} I_{\mathcal{A}}$?

Example 1

Using Macaulay 2, we can construct ($n-2$)-plane arrangements with the desired incidence graphs.
If $n=3$ and $\Gamma(\mathcal{A})=K_{3,3}$, then $I_{\mathcal{A}}$ has the following Betti table:

	0	1
2	1	\cdot
3	1	\cdot
4	\cdot	1
$\operatorname{reg} I_{\mathcal{A}}$	$=4$	

Example 2

If $n=3$ and $\Gamma(\mathcal{A})=K_{5,10}$, then $I_{\mathcal{A}}$ has the following Betti table:

	0	1	2
2	1	\cdot	\cdot
3	\cdot	\cdot	\cdot
4	\cdot	\cdot	\cdot
5	\cdot	\cdot	\cdot
6	\cdot	\cdot	\cdot
7	\cdot	\cdot	\cdot
8	\cdot	\cdot	\cdot
9	\cdot	\cdot	\cdot
10	6	10	4
$\operatorname{reg} I_{\mathcal{A}}=$	10		

The result

Theorem
If $\Gamma(\mathcal{A})=K_{a, b}$ with $a \leq b \leq, a \leq b \leq 3$, or $3 \leq a \leq b$, then $\operatorname{reg} I_{\mathcal{A}}=\max \{a+1, b\}$.
Sketch of proof. Suppose \mathcal{A} is a line arrangement in \mathbb{P}^{3}. Then \mathcal{A} consists of rulings of a quadric surface Q.

Sketch of proof, cont.

The result follows from computing cohomologies using the exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2) \xrightarrow{\cdot Q} \tilde{I}_{\mathcal{A}} \rightarrow \mathcal{I}_{V_{\mathcal{A}} \cap Q, Q} \rightarrow 0
$$

For $n>3$, it can be shown that $V_{\mathcal{A}}$ is a cone over a line arrangement in \mathbb{P}^{3} with the same incidence graph, and therefore it has the same regularity.

Arithmetic Cohen-Macaulayness

The sheaf cohomology calculations used to prove the above result can also be used to prove the following result.

Theorem
If $\Gamma(\mathcal{A})=K_{a, b}$ with $a \leq b \leq, a \leq b \leq 3$, or $3 \leq a \leq b$, then $V_{\mathcal{A}}$ is arithmetically Cohen-Macaulay if and only if $b \in\{a, a+1\}$.

Thank you!

