Generic forms of low Chow rank

Douglas A. Torrance

Piedmont College

January 6, 2017

Piedmont College

イロト イロト イヨト イヨ

Douglas A. Torrance

Introduction	
•	
Definition	

Let \Bbbk be an algebraically closed field of characteristic 0, $R = \Bbbk[x_0, \ldots, x_n]$ a polynomial ring with the usual grading, and R_d the *d*th graded piece of *R*.

Definition

If $f \in R_d$, then the **Chow rank** of f is the least s for which there exist $\ell_{i,j} \in R_1$ such that

$$f = \ell_{1,1} \cdots \ell_{1,d} + \cdots + \ell_{s,1} \cdots \ell_{s,d},$$

i.e., f may be written as the sum of s completely reducible forms.

Example

Since
$$x^2 - y^2 = (x + y)(x - y)$$
, its Chow rank is 1.

▲日▼▲□▼▲目▼▲目▼ 目 ろんの

Piedmont College

Douglas A. Torrance

Introduction	
● ●	
Motivation	

The Chow rank tells us something about the computational complexity of evaluating a form.

Example Suppose $f(x, y) = x^2 - y^2$. Then $f(2, 1) = 2 \times 2 - 1 \times 1 = 4 - 1 = 3$, which requires 2 multiplications. But also $f(2, 1) = (2 + 1) \times (2 - 1) = 3 \times 1 = 3$, only requiring 1 multiplication.

イロト イポト イヨト イヨト

Piedmont College

Douglas A. Torrance

	• 0 O	
Secant varieties		

Definition

Let X be a projective variety.

A secant (s - 1)-plane to X is the linear subspace spanning s points of X, e.g., 2 points determine a secant line, 3 points a secant plane, etc.

The sth **secant variety** of X is the Zariski closure of the union of all (s-1)-planes to X, denoted $\sigma_s(X)$.

If $f, g_1, \ldots, g_s \in R_d$, $[g_i] \in X \subset \mathbb{P}R_d$, and

$$f=g_1+\cdots+g_s,$$

< □ > < 同 > < Ξ > <</p>

Piedmont College

then $[f] \in \sigma_s(X)$.

Douglas A. Torrance

	Tools O● ○	
Secant varieties		

Definition

The Chow variety (aka split variety, variety of completely decomposable forms, or variety of completely reducible forms) is

$$\operatorname{Split}_d(\mathbb{P}^n) = \{ [\ell_1 \cdots \ell_d] : \ell_i \in R_1 \},\$$

i.e., the variety in $\mathbb{P}R_d$ corresponding to the completely reducible forms.

So the Chow rank of a generic form f is the smallest s for which

 $\sigma_s(\operatorname{Split}_d(\mathbb{P}^n)) = \mathbb{P}R_d.$

• • • • • • • • • • • •

Piedmont College

Douglas A. Torrance

Lemma (Terracini)

Let $p_1, \ldots, p_s \in X$ be generic. Then

$$\dim \sigma_{\mathfrak{s}}(X) = \dim \langle T_{p_1}X, \ldots, T_{p_s}X \rangle.$$

We can reduce the problem of finding the dimension of a secant variety to finding the rank of a matrix!

< ロ > < 回 > < 回 > < 回 > < 回 >

Piedmont College

Douglas A. Torrance

	Results ●0
Induction	

Suppose A is the matrix whose rank determines the dimension of $\sigma_s(\text{Split}_d(\mathbb{P}^n))$. By careful choice of our points p_1, \ldots, p_s , we can find matrices B, C, and D corresponding to spaces of forms with n variables and degrees d, d-1, and d-2, respectively, such that

$$A = \begin{pmatrix} B & 0 & 0 \\ 0 & C & 0 \\ 0 & 0 & D \end{pmatrix}.$$

Then

$$\operatorname{rank} A = \operatorname{rank} B + \operatorname{rank} C + \operatorname{rank} D.$$

< □ > < 同 > < Ξ > <</p>

Piedmont College

Douglas A. Torrance

	Results
	○ ● ○○○
Induction	

Using induction, we obtain the following result.

イロト イロト イヨト イヨト

э

Piedmont College

Douglas A. Torrance

		Results
		00
0	0	•00
Calculations		

For fixed s, this reduces finding dim $\sigma_s(\text{Split}_d(\mathbb{P}^n))$ for all n, d to checking finitely many base cases.

Douglas A. Torrance

	Results
	00 0●0
Calculations	

Using Macaulay2 to check as many of these base cases as possible, we obtain the following result.

Theorem (T.) If $s \le 35$, then $\dim \sigma_s(\operatorname{Split}_d(\mathbb{P}^n)) = \min \left\{ s(dn+1), \binom{n+d}{d} \right\} - 1,$ except for some previously known special cases when d = 2.

• • • • • • • • • • • •

Piedmont College

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Douglas A. Torrance

Generic forms of low Chow rank

Piedmont College