Generic forms of low Chow rank

Douglas A. Torrance

Piedmont College
January 6, 2017

Let \mathbb{k} be an algebraically closed field of characteristic 0 , $R=\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ a polynomial ring with the usual grading, and R_{d} the d th graded piece of R.

Definition

If $f \in R_{d}$, then the Chow rank of f is the least s for which there exist $\ell_{i, j} \in R_{1}$ such that

$$
f=\ell_{1,1} \cdots \ell_{1, d}+\cdots+\ell_{s, 1} \cdots \ell_{s, d}
$$

i.e., f may be written as the sum of s completely reducible forms.

Example

Since $x^{2}-y^{2}=(x+y)(x-y)$, its Chow rank is 1 .

The Chow rank tells us something about the computational complexity of evaluating a form.

Example

Suppose $f(x, y)=x^{2}-y^{2}$. Then

$$
f(2,1)=2 \times 2-1 \times 1=4-1=3
$$

which requires 2 multiplications. But also

$$
f(2,1)=(2+1) \times(2-1)=3 \times 1=3,
$$

only requiring 1 multiplication.

Definition

Let X be a projective variety.
A secant $(s-1)$-plane to X is the linear subspace spanning s points of X, e.g., 2 points determine a secant line, 3 points a secant plane, etc.
The sth secant variety of X is the Zariski closure of the union of all $(s-1)$-planes to X, denoted $\sigma_{s}(X)$.

If $f, g_{1}, \ldots, g_{s} \in R_{d},\left[g_{i}\right] \in X \subset \mathbb{P} R_{d}$, and

$$
f=g_{1}+\cdots+g_{s}
$$

then $[f] \in \sigma_{s}(X)$.

Definition

The Chow variety (aka split variety, variety of completely decomposable forms, or variety of completely reducible forms) is

$$
\operatorname{Split}_{d}\left(\mathbb{P}^{n}\right)=\left\{\left[\ell_{1} \cdots \ell_{d}\right]: \ell_{i} \in R_{1}\right\},
$$

i.e., the variety in $\mathbb{P} R_{d}$ corresponding to the completely reducible forms.

So the Chow rank of a generic form f is the smallest s for which

$$
\sigma_{s}\left(\operatorname{Split}_{d}\left(\mathbb{P}^{n}\right)\right)=\mathbb{P} R_{d}
$$

Lemma (Terracini)

Let $p_{1}, \ldots, p_{s} \in X$ be generic. Then

$$
\operatorname{dim} \sigma_{s}(X)=\operatorname{dim}\left\langle T_{p_{1}} X, \ldots, T_{p_{s}} X\right\rangle
$$

We can reduce the problem of finding the dimension of a secant variety to finding the rank of a matrix!

Suppose A is the matrix whose rank determines the dimension of $\sigma_{s}\left(\operatorname{Split}_{d}\left(\mathbb{P}^{n}\right)\right)$. By careful choice of our points p_{1}, \ldots, p_{s}, we can find matrices B, C, and D corresponding to spaces of forms with n variables and degrees $d, d-1$, and $d-2$, respectively, such that

$$
A=\left(\begin{array}{lll}
B & 0 & 0 \\
0 & C & 0 \\
0 & 0 & D
\end{array}\right)
$$

Then

$$
\operatorname{rank} A=\operatorname{rank} B+\operatorname{rank} C+\operatorname{rank} D .
$$

Using induction, we obtain the following result.

Theorem (T.)

If

$$
\operatorname{dim} \sigma_{s}\left(\operatorname{Split}_{d}\left(\mathbb{P}^{n_{0}}\right)\right)=s\left(d n_{0}+1\right)-1
$$

then

$$
\operatorname{dim} \sigma_{s}\left(\operatorname{Split}_{d}\left(\mathbb{P}^{n}\right)\right)=s(d n+1)-1
$$

for all $n \geq n_{0}$.

For fixed s, this reduces finding $\operatorname{dim} \sigma_{s}\left(\operatorname{Split}_{d}\left(\mathbb{P}^{n}\right)\right)$ for all n, d to checking finitely many base cases.

$$
s=9
$$

\square prev. known
\square check
\square induction

Using Macaulay2 to check as many of these base cases as possible, we obtain the following result.

Theorem (T.)

If $s \leq 35$, then

$$
\operatorname{dim} \sigma_{s}\left(\operatorname{Split}_{d}\left(\mathbb{P}^{n}\right)\right)=\min \left\{s(d n+1),\binom{n+d}{d}\right\}-1
$$

except for some previously known special cases when $d=2$.

Thank you!

