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Definition

Suppose R = k[x0, . . . , xn] for some field k and let R1 be the vector
space of linear forms, i.e., degree 1 homogeneous elements of R.
If `1, . . . , `c ∈ R1 are linearly independent, then the set

V (`1, . . . , `c) = {P ∈ Pn : `i (P) = 0 for all i}

is a linear subspace of Pn of codimension c.

Think lines in P3 or planes in P4.
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Consider two distinct linear subspaces of codimension 2. They
either intersect in codimension 3 or codimension 4. (Linear
algebra!)

V (x , y) ∩ V (y , z) = V (x , y , z)

V (x , y) ∩ V (z ,w) = V (x , y , z ,w)

In P3, lines intersects in points or not at all.
In P4, planes intersect in lines or points.
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Definition

Let A be an arrangement of linear subspaces of codimension 2.
The incidence graph of A is the graph Γ(A) with

vertex set A
edge set {{V1,V2} : codimV1 ∩ V2 = 3}
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Consider a line arrangement A = {V1,V2,V3} in P3 with
Γ(A) = P3.

Note that
⋂
A = ∅. Not very interesting.
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Now move to P4. If Γ(A) = P3, then
⋂
A must be a point.

⋂
A
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Proof.

V1 ∩ V2 and V2 ∩ V3 are lines in the projective plane V2, and so
they intersect in a common point.

This actually works for all n ≥ 4. If Γ(A) = P3, then
codim

⋂
A = 4.
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There are two types of arrangements with Γ(A) = K3, starshaped
and nonstarshaped.
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If Γ(A) is a diamond, then one triangle must be starshaped and
the other nonstarshaped.
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Definition

The triangle graph T (G ) of a graph G is the graph whose vertices
are the triangle (K3) subgraphs of G and whose edges are pairs of
triangles which share a common edge.

If G is a diamond, then T (G ) = K2.
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Theorem (–)

If G is K4-free and T (G ) is not 2-colorable, then there are no
subspace arrangements A with Γ(A) = G .

Proof.

Each edge in T (G ) corresponds to a diamond in G . We color the
corresponding vertices depending on whether each triangle is
starshaped or nonstarshaped.
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Some examples of graphs which are not incidence graphs of
subspace arrangements.
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If Γ(A) is a diamond, then codim
⋂
A = 4. (Same argument as

P3.)

⋂
A
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What other families of graphs have this property?

Theorem (Teitler, –)

If Γ(A) is a complete bipartite graph, then codim
⋂
A = 4.
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P3 is a complete bipartite graph, but a diamond is not. Can we
generalize the diamond?

Theorem (Nelson, –)

If Γ(A) is a biconal graph, i.e., there are two vertices which are
adjacent to all other vertices in the graph except each other, then
codim

⋂
A = 4.
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Thank you!
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