Biconal subspace arrangements

Douglas A. Torrance

Piedmont College
March 8, 2019

Definition

Suppose $R=\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ for some field \mathbb{k} and let R_{1} be the vector space of linear forms, i.e., degree 1 homogeneous elements of R. If $\ell_{1}, \ldots, \ell_{c} \in R_{1}$ are linearly independent, then the set

$$
V\left(\ell_{1}, \ldots, \ell_{c}\right)=\left\{P \in \mathbb{P}^{n}: \ell_{i}(P)=0 \text { for all } i\right\}
$$

is a linear subspace of \mathbb{P}^{n} of codimension c.
Think lines in \mathbb{P}^{3} or planes in \mathbb{P}^{4}.

Consider two distinct linear subspaces of codimension 2. They either intersect in codimension 3 or codimension 4. (Linear algebra!)

■ $V(x, y) \cap V(y, z)=V(x, y, z)$

- $V(x, y) \cap V(z, w)=V(x, y, z, w)$

In \mathbb{P}^{3}, lines intersects in points or not at all.
In \mathbb{P}^{4}, planes intersect in lines or points.

Definition

Let \mathcal{A} be an arrangement of linear subspaces of codimension 2 .
The incidence graph of \mathcal{A} is the graph $\Gamma(\mathcal{A})$ with

- vertex set \mathcal{A}
- edge set $\left\{\left\{V_{1}, V_{2}\right\}: \operatorname{codim} V_{1} \cap V_{2}=3\right\}$

Consider a line arrangement $\mathcal{A}=\left\{V_{1}, V_{2}, V_{3}\right\}$ in \mathbb{P}^{3} with $\Gamma(\mathcal{A})=P_{3}$.

Note that $\bigcap \mathcal{A}=\emptyset$. Not very interesting.

Now move to \mathbb{P}^{4}. If $\Gamma(\mathcal{A})=P_{3}$, then $\bigcap \mathcal{A}$ must be a point.

Proof.

$V_{1} \cap V_{2}$ and $V_{2} \cap V_{3}$ are lines in the projective plane V_{2}, and so they intersect in a common point.

This actually works for all $n \geq 4$. If $\Gamma(\mathcal{A})=P_{3}$, then $\operatorname{codim} \bigcap \mathcal{A}=4$.

There are two types of arrangements with $\Gamma(\mathcal{A})=K_{3}$, starshaped and nonstarshaped.

If $\Gamma(\mathcal{A})$ is a diamond, then one triangle must be starshaped and the other nonstarshaped.

Definition

The triangle graph $T(G)$ of a graph G is the graph whose vertices are the triangle $\left(K_{3}\right)$ subgraphs of G and whose edges are pairs of triangles which share a common edge.

If G is a diamond, then $T(G)=K_{2}$.

Theorem (-)
If G is K_{4}-free and $T(G)$ is not 2-colorable, then there are no subspace arrangements \mathcal{A} with $\Gamma(\mathcal{A})=G$.

Proof.

Each edge in $T(G)$ corresponds to a diamond in G. We color the corresponding vertices depending on whether each triangle is starshaped or nonstarshaped.

Some examples of graphs which are not incidence graphs of subspace arrangements.

If $\Gamma(\mathcal{A})$ is a diamond, then $\operatorname{codim} \bigcap \mathcal{A}=4$. (Same argument as P_{3}.)

What other families of graphs have this property?
Theorem (Teitler, -)
If $\Gamma(\mathcal{A})$ is a complete bipartite graph, then $\operatorname{codim} \cap \mathcal{A}=4$.

P_{3} is a complete bipartite graph, but a diamond is not. Can we generalize the diamond?

Theorem (Nelson, -)

If $\Gamma(\mathcal{A})$ is a biconal graph, i.e., there are two vertices which are adjacent to all other vertices in the graph except each other, then $\operatorname{codim} \bigcap \mathcal{A}=4$.

Thank you!

