Biconal subspace arrangements

Douglas A. Torrance

Piedmont College

March 8, 2019

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 ろく??

Piedmont College

Douglas A. Torrance

Linear subspaces ●○		

Definition

Suppose $R = \Bbbk[x_0, ..., x_n]$ for some field \Bbbk and let R_1 be the vector space of *linear forms*, i.e., degree 1 homogeneous elements of R. If $\ell_1, ..., \ell_c \in R_1$ are linearly independent, then the set

$$V(\ell_1,\ldots,\ell_c) = \{P \in \mathbb{P}^n : \ell_i(P) = 0 \text{ for all } i\}$$

is a linear subspace of \mathbb{P}^n of codimension c.

Think lines in \mathbb{P}^3 or planes in \mathbb{P}^4 .

Piedmont College

▲□ ► ▲ □ ► ▲

Douglas A. Torrance

Linear subspaces ○●		

Consider two distinct linear subspaces of codimension 2. They either intersect in codimension 3 or codimension 4. (Linear algebra!)

•
$$V(x,y) \cap V(y,z) = V(x,y,z)$$

$$V(x,y) \cap V(z,w) = V(x,y,z,w)$$

In \mathbb{P}^3 , lines intersects in points or not at all. In \mathbb{P}^4 , planes intersect in lines or points.

• • • • • • • • • • •

Linear subspaces Incidence graphs Triangle

Triangle and diamond arrangements 000000 Complete bipartite and biconal arrangements

Definition

Let \mathcal{A} be an arrangement of linear subspaces of codimension 2. The *incidence graph* of \mathcal{A} is the graph $\Gamma(\mathcal{A})$ with

- vertex set \mathcal{A}
- edge set $\{\{V_1, V_2\} : \text{codim } V_1 \cap V_2 = 3\}$

Consider a line arrangement $\mathcal{A} = \{V_1, V_2, V_3\}$ in \mathbb{P}^3 with $\Gamma(\mathcal{A}) = P_3$.

Note that $\bigcap \mathcal{A} = \emptyset$. Not very interesting.

Piedmont College

Douglas A. Torrance

Now move to \mathbb{P}^4 . If $\Gamma(\mathcal{A}) = P_3$, then $\bigcap \mathcal{A}$ must be a point.

▲□▶ ▲□▶ ▲Ξ▶ ▲Ξ▶ Ξ - のQの

Piedmont College

Douglas A. Torrance

Incidence graphs 000●	

Proof.

 $V_1 \cap V_2$ and $V_2 \cap V_3$ are lines in the projective plane V_2 , and so they intersect in a common point.

This actually works for all $n \ge 4$. If $\Gamma(\mathcal{A}) = P_3$, then $\operatorname{codim} \bigcap \mathcal{A} = 4$.

▲□▶▲圖▶▲圖▶▲圖▶ ▲ □ ● ④ ● ●

Piedmont College

Douglas A. Torrance

	Triangle and diamond arrangements •00000	

There are two types of arrangements with $\Gamma(\mathcal{A}) = K_3$, starshaped and nonstarshaped.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 のへで

Douglas A. Torrance

Piedmont College

	Triangle and diamond arrangements 0●0000	

If $\Gamma(\mathcal{A})$ is a *diamond*, then one triangle must be starshaped and the other nonstarshaped.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 のへで

Douglas A. Torrance

Piedmont College

Triangle and diamond arrangements

Complete bipartite and biconal arrangements 000

Definition

The triangle graph T(G) of a graph G is the graph whose vertices are the triangle (K_3) subgraphs of G and whose edges are pairs of triangles which share a common edge.

If G is a diamond, then $T(G) = K_2$.

Piedmont College

Douglas A. Torrance

	Triangle and diamond arrangements	

Theorem (–)

If G is K₄-free and T(G) is not 2-colorable, then there are no subspace arrangements A with $\Gamma(A) = G$.

Proof.

Each edge in T(G) corresponds to a diamond in G. We color the corresponding vertices depending on whether each triangle is starshaped or nonstarshaped.

• • • • • • • • • • • •

Piedmont College

Douglas A. Torrance

Some examples of graphs which are *not* incidence graphs of subspace arrangements.

Douglas A. Torrance

ear subspaces

If $\Gamma(A)$ is a diamond, then codim $\bigcap A = 4$. (Same argument as $P_{3.}$)

Piedmont College

Douglas A. Torrance

Linear subspaces 00	Incidence graphs 0000	Triangle and diamond arrangements 000000	Complete bipartite and biconal arrangements •00
What o	other families	of graphs have this pro	perty?
		5 1	
Theore	m (Teitler, –)	

If $\Gamma(\mathcal{A})$ is a complete bipartite graph, then $\operatorname{codim} \bigcap \mathcal{A} = 4$.

Douglas A. Torrance

Piedmont College

 P_3 is a complete bipartite graph, but a diamond is not. Can we generalize the diamond?

Theorem (Nelson, –)

If $\Gamma(\mathcal{A})$ is a biconal graph, i.e., there are two vertices which are adjacent to all other vertices in the graph except each other, then $\operatorname{codim} \bigcap \mathcal{A} = 4$.

▲□▶▲□▶▲臣▶▲臣▶ 臣 ののの

Douglas A. Torrance

Piedmont College

	Complete bipartite and biconal arrangements 00●

Thank you!

Piedmont College

Douglas A. Torrance