

Semiregular Tangles

Douglas A. Torrance w/ Christopher Bale, Nathan Boyce, Collin Grant, and Janet Madera March 15, 2024, MAA-SE, University of Tennessee, Knoxville

Piedmont University

Tangles

A **Tangle** (named after the popular fidget toy) is a smooth closed plane curve made by gluing together arcs of circles with a common radius.

Most of the existing literature is devoted to **square Tangles**, in which the arcs are all quarter circles like the toys.

2

Observation

The arcs in a square Tangle all belong to circles in a *square circle* packing, which corresponds to the *square tiling* of the plane.

3

Regular Tangles

There are two other *regular* tilings of the plane: by equilateral triangles and regular hexagons that can be used to construct tangles with $\frac{1}{6}$ -circle and $\frac{1}{3}$ -circle links, respectively.

Each Tangle corresponds to a *dual polyform*, a set of polygons from the underlying tiling with a vertex coloring of its boundary.

Semiregular tilings

There are also eight additional *semiregular* tilings of the plane that use two or more regular polygons. We can use these to create new types of Tangles!

We focus on three of them: the *truncated square*, *elongated triangular*, and *snub square* tilings.

Question

For square Tangles, the *length* (i.e., the number of links) is always a multiple of four.

What can we say about the length of a semiregular Tangle?

Generalizing the notion of length

The *length* of a Tangle is the k-tuple (ℓ_1, \ldots, ℓ_k) , where

- k is the number of distinct polygons in the underlying tiling (so k = 2 in our cases),
- ℓ_i is the number of links that pass through a polygon of type i in the underlying tiling, and
- ullet types are ordered so that if i < j, then a polygon of type i has fewer sides than a polygon of type j.

Length of a circle

The simplest Tangle is a circle, which corresponds to a single vertex in the tiling.

As a truncated square, elongated triangular, and snub square Tangle, the circle has length (1,2), (3,2), and (3,2), respectively.

Induction

To prove our results about the length of semiregular Tangles, we use induction on the number of polygons in the dual polyform.

- Base case: What is the length of a circle?
- *Inductive step:* How does adding a small set of polygons to the dual polyform change the length of the Tangle?

For each type of Tangle, we will need to define a set of fundamental operations to use in this inductive step.

If there exists a sequence of fundamental operations taking a circle to a given Tangle, then the Tangle is *constructible*.

Truncated square Tangle fundamental operations – adding a square

Net change in length: (+1, +2) and (-1, -2).

Truncated square Tangle fundamental operations – adding an octagon (part I)

Net change in length: (+3, +6) and (+1, +2).

Truncated square Tangle fundamental operations – adding an octagon (part II)

Net change in length: (-1, -2) and (-3, -6).

Truncated square Tangle length

Lemma

A constructible truncated square Tangle has length (n,2n) for some positive integer n.

Lemma

Every truncated square Tangle is constructible.

Theorem (Bale, Grant)

A truncated square Tangle has length (n,2n) for some positive integer n. Furthermore, a truncated square Tangle of length (n,2n) exists for all $n \neq 3$.

Elongated triangular and snub square Tangles

When triangles are in the tiling, things get trickier!

- Triangles aren't 2-colorable, so we need to add them in pairs.
- It's harder to identify fundamental operations.
- We don't know if every Tangle is constructible.

Elongated triangular Tangle fundamental operations – adding a square

Net change in length: (+3, +2) and (-3, -2).

Elongated triangular Tangle fundamental operations – adding pairs of triangles

Net change in length: (+1,+2), (-1,-2), (-1,+2), and (+1,-2).

Elongated triangular Tangle length

Theorem (Madera)

A constructible elongated triangular Tangle has length (m,2n) for positive integers m and n.

Are all elongated triangular Tangles constructible using these six fundamental operations?

Snub square Tangle fundamental operations – adding a square

Net change in length: (+3, +2) and (-3, -2).

Snub square Tangle fundamental operations – adding pairs of triangles

Net change in length: (+1, +2), (-1, -2), (+1, 0), and (-1, 0).

Elongated triangular Tangle length

Theorem (Boyce)

A constructible elongated triangular Tangle has length (m,2n) for positive integers m and n.

We may need to add some fundamental operations involving disjoint triangles.

Tangle font: http://erikdemaine.org/fonts/tangle/