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Polynomial decompositions



A simple example

Consider the binary quadratic form f = x2 + y2 ∈ C[x, y].

� f is a sum of two squares of linear forms

� f = (x+ iy)(x− iy), i.e., f is the product of two linear forms
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Waring rank

Consider an (n+ 1)-ary d-ic f (i.e., n+ 1 variable, degree d).

What is the smallest s such that

f = `d1 + · · ·+ `ds

for linear forms `i? We call s the Waring rank of f .

For example, the Waring rank of x2 + y2 is 2.
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Chow rank

Consider an (n+ 1)-ary d-ic f . What is the smallest s such that

f = `1,1 · · · `1,d + · · ·+ `s,1 · · · `s,d

for linear forms `i,j? We call s the Chow rank of f .

For example, the Chow rank of x2 + y2 is 1.
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Chow-Waring rank

Let d = (d1, . . . , dk) with d1 + · · ·+ dk = d.

Consider (n+ 1)-ary d-ic f . What is the smallest s such that

f = `d11,1 · · · `
dk
1,k + · · ·+ `d1s,1 · · · `

dk
s,k

for linear forms `i,j? We call s the Chow-Waring rank of f for d.

� d = (d) =⇒ Waring rank

� d = (1, . . . , 1) =⇒ Chow rank
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Secant varieties



Veronese varieties

Every (n+ 1)-ary linear form corresponds to a point in Pn.

Every (n+ 1)-ary d-ic corresponds to a point in P(
n+d
d )−1.

We define the Veronese map

νd : Pn → P(
n+d
d )−1

[`] 7→ [`d]

The image νd(Pn) is known as a Veronese variety.
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Secant lines

Forms of Waring rank 2 lie on a secant line to a Veronese variety.

νd(Pn)

[`d1] [`d2]

[`d1 + `d2]
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Secant varieties to Veronese varieties

Forms of Waring rank s lie on a secant (s− 1)-plane to a Veronese

variety. In particular, they lie on the sth secant variety σs(νd(Pn)):

σs(X) =
⋃

p1,...,ps∈X
〈p1, . . . , ps〉
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Waring rank of generic forms

If σs(νd(Pn)) = P(
n+d
d )−1, then (almost) all (n+ 1)-ary d-ics have

Waring rank ≤ s.

Goal: Find the smallest s such that

dimσs(νd(Pn)) =

(
n+ d

d

)
− 1.
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Chow-Waring rank of generic forms

More generally, the Chow-Waring rank of a generic form for

d = (d1, . . . , dk) is the smallest s such that

dimσs(CVd(Pn)) =

(
n+ d

d

)
− 1,

where the Chow-Veronese variety CVd(Pn) is the image of the

map

(Pn)×k → P(
n+d
d )−1

([`1], . . . , [`k]) 7→ [`d11 · · · `
dk
k ]
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Dimensions of secant varieties



Expected dimension

Based on a näıve parameter count, we see that for X ⊂ P(
n+d
d )−1,

dimσs(X) ≤ s dimX + s− 1 = s(dimX + 1)− 1.

So:

dimσs(X) ≤ min

{
s(dimX + 1),

(
n+ d

d

)}
− 1.

We call this upper bound the expected dimension of σs(X),

denoted expdimσs(X).

11



Expected Chow-Waring rank

Since dimCVd(Pn) = kn, where d = (d1, . . . , dk), we see that if s

is the Chow-Waring rank of a generic (n+ 1)-ary d-ic for d and if

σs(CVd(Pn) has the expected dimension, then s is the smallest

integer for which

s(kn+ 1) ≥
(
n+ d

d

)
,

and so

s =

⌈
1

kn+ 1

(
n+ d

d

)⌉
.

Question: When does this work?

12



Defective cases

Cases for which dimσs(CVd(Pn))) < expdimσs(CVd(Pn)):

� d = (2), n ≥ 2, 2 ≤ s ≤ n
� d = (1, 1), n ≥ 4, 2 ≤ n ≤ n

2

� d = (3), n = 4, s = 7

� d = (2, 1), 2 ≤ n ≤ 4, s = n

� d = (4), 2 ≤ n ≤ 4, s =
(
n+2
2

)
− 1

Conjecture: This is it!
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Question

For the other cases, how can we show that

dimσs(CVd(Pn))) = expdimσs(CVd(Pn))?
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Techniques



Terracini’s lemma

Lemma (Terracini)
Let p1, . . . , ps ∈ X be generic. Then

dimσs(X) = dim〈Tp1X, . . . , TpsX〉.

We can reduce the problem of finding the dimension of a secant

variety to finding the rank of a matrix!

For X = CVd(Pn), these tangent spaces are straightforward to

construct using the product rule from calculus.

Idea: Choose the points p1, . . . , ps carefully so we can use

induction and semicontinuity.
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Abundancy

Fact

(subabundant) Let s1 =
⌊

1
kn+1

(
n+d
d

)⌋
.

dimσs1(CVd(Pn)) = s1(kn+ 1)− 1 =⇒
∀s ≤ s1,dimσs(CVd(Pn)) = s(kn+ 1)− 1

(superabundant) Let s2 =
⌈

1
kn+1

(
n+d
d

)⌉
.

dimσs2(CVd(Pn)) =

(
n+ d

d

)
− 1 =⇒

∀s ≥ s2,dimσs(CVd(Pn)) =

(
n+ d

d

)
− 1
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Only need two cases for each pair n,d

If

dimσsi(CVd(Pn)) = expdimσsi(CVd(Pn))

for i = 1, 2, then

dimσs(CVd(Pn)) = expdimσs(CVd(Pn))

for all s ∈ N.
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Quasipolynomials

Fact⌊
1

kn+1

(
n+d
d

)⌋
and

⌈
1

kn+1

(
n+d
d

)⌉
are quasipolynomial functions

of degree d− 1 for n� 0, i.e., there exists some ` and degree

d− 1 polynomial functions s0, . . . , s`−1 such that⌊
1

kn+ 1

(
n+ d

d

)⌋
= sr(n) if n ≡ r (mod `)⌈

1

kn+ 1

(
n+ d

d

)⌉
= sr(n) + 1 if n ≡ r (mod `)
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Backward difference operator

Suppose s is a polynomial function of degree d− 1. Then the

backward difference operator ∇ with step size ` is:

∇0s(n) = s(n)

∇is(n) = ∇i−1s(n)−∇i−1s(n− `) ∀i ≥ 1

In particular, ∇ds(n) = 0.
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Newton backward difference formula

Theorem

s(n) =

d∑
j=0

(
d

j

)
∇d−js(n− j`).

Observation: Suppose we have d linear subspaces of P(
n+d
d )−1.

(
d
j

)
is also the number of ways in which j of these subspaces can

intersect.

20



Brambilla-Ottaviani lattice

Choose s(n) points on CVd(Pn) so that each element of the

intersect lattice of d subspaces gets the number of points

corresponding to a summand of the Newton backward difference

formula.
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Brambilla-Ottaviani lattice (visualized)
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Induction

If we compute the the ranks of matrices constructed using

Terracini’s lemma for n ≤ d`+ 1 as base cases and get the

expected value, then the dimension is the expected one for all n.

If we have the expected dimension for these specialized cases, then

we have the expected dimension for the general case by

semicontinuity.
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Results for d = 3

Using this technique:

Theorem

Except for the known defective cases, σs(CVd(Pn)) has the

expected dimension for

� d = (3) [Brambilla, Ottaviani (2008)]1 (` = 3)

� d = (2, 1) [Abo, Vannieuwenhoven (2018)] (` = 24)

1Previously proven, using different techniques, in [Alexander, Hirschowitz

(1995)] and [Chandler (2002)]
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Results for the Chow variety

Fact

Since 1
dn+1

(
n+d
d

)
is symmetric in n and d, this technique also

works in the Chow case (d = (1, . . . , 1)) when fixing n and using

induction on d

Theorem

σs(CV(1,...,1)(Pn)) has the expected dimension for

� n = 2 [Abo (2014)] (` = 4)

� n = 3, d = 3 [Abo (2014)] (partial, ` = 6)

� n = 3 [T. (2013)] (partial, ` = 9)

� n = 3, d = 3 [T., Vannieuwenhoven (2021)] (complete,

` = 27)
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Horace differential lemma
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Horace =⇒ cubics as base case

Theorem

� If σs(CV(3)(Pn)) has the expected dimension, then

σs(CV(d)(Pn)) has the expected dimension for d ≥ 3.

[Alexander, Hirschowitz (1992)]

� If σs(CV(2,1)(Pn)) has the expected dimension, then

σs(CV(d−1,1)(Pn)) has the expected dimension for d ≥ 3.

[Bernardi, Catalisano, Gimigliano, Idá (2009)]

Question: Can we do this for other d?
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Another approach

Idea: Apply a technique from [Abo, Ottaviani, Peterson (2009)] on

the secant varieties of Segre varieties.

Suppose A is the matrix whose rank determines the dimension of

σs(CV(1,...,1)(Pn)). By careful choice of our points p1, . . . , ps, we

can find matrices B, C, and D corresponding to spaces of forms

with n variables and degrees d, d− 1, and d− 2, respectively, such

that

A =

B 0 0

0 C 0

0 0 D

 .

Then

rankA = rankB + rankC + rankD.
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Induction on n

Using induction, we obtain the following result.

Theorem (T. (2017))
If

dimσs(CV(1,...,1)(Pn0)) = s(dn0 + 1)− 1,

then

dimσs(CV(1,...,1)(Pn)) = s(dn+ 1)− 1

for all n ≥ n0.
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Fixed s

For fixed s, this reduces finding dimσs(CV(1,...,1) Pn)) for all n, d

to checking finitely many base cases.

d

n

1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s = 9

prev. known

check (n0)

check (super.)

induction
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Nondefective for small s

Using Macaulay2 to check as many of these base cases as possible,

we obtain the following result.

Theorem (T. (2017))

If s ≤ 35, then σs(CVd(Pn)) has the expected dimension except

for the previously known defective cases.

31



Thank you!
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