The Chow-Waring problem

Douglas A. Torrance
April 15, 2021
Piedmont University

Polynomial decompositions

A simple example

Consider the binary quadratic form $f=x^{2}+y^{2} \in \mathbb{C}[x, y]$.

- f is a sum of two squares of linear forms
- $f=(x+i y)(x-i y)$, i.e., f is the product of two linear forms

Waring rank

Consider an $(n+1)$-ary d-ic f (i.e., $n+1$ variable, degree d). What is the smallest s such that

$$
f=\ell_{1}^{d}+\cdots+\ell_{s}^{d}
$$

for linear forms ℓ_{i} ? We call s the Waring rank of f.
For example, the Waring rank of $x^{2}+y^{2}$ is 2 .

Chow rank

Consider an $(n+1)$-ary d-ic f. What is the smallest s such that

$$
f=\ell_{1,1} \cdots \ell_{1, d}+\cdots+\ell_{s, 1} \cdots \ell_{s, d}
$$

for linear forms $\ell_{i, j}$? We call s the Chow rank of f.
For example, the Chow rank of $x^{2}+y^{2}$ is 1 .

Chow-Waring rank

Let $\mathbf{d}=\left(d_{1}, \ldots, d_{k}\right)$ with $d_{1}+\cdots+d_{k}=d$.
Consider $(n+1)$-ary d-ic f. What is the smallest s such that

$$
f=\ell_{1,1}^{d_{1}} \cdots \ell_{1, k}^{d_{k}}+\cdots+\ell_{s, 1}^{d_{1}} \cdots \ell_{s, k}^{d_{k}}
$$

for linear forms $\ell_{i, j}$? We call s the Chow-Waring rank of f for \mathbf{d}.

- $\mathbf{d}=(d) \Longrightarrow$ Waring rank
- $\mathbf{d}=(1, \ldots, 1) \Longrightarrow$ Chow rank

Secant varieties

Veronese varieties

Every $(n+1)$-ary linear form corresponds to a point in \mathbb{P}^{n}.
Every $(n+1)$-ary d-ic corresponds to a point in $\mathbb{P}^{\binom{n+d}{d}-1}$.
We define the Veronese map

$$
\begin{gathered}
\left.\nu_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{(n+d} d\right)-1 \\
{[\ell] \mapsto\left[\ell^{d}\right]}
\end{gathered}
$$

The image $\nu_{d}\left(\mathbb{P}^{n}\right)$ is known as a Veronese variety.

Secant lines

Forms of Waring rank 2 lie on a secant line to a Veronese variety.

Secant varieties to Veronese varieties

Forms of Waring rank s lie on a secant $(s-1)$-plane to a Veronese variety. In particular, they lie on the sth secant variety $\sigma_{s}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)$:

$$
\sigma_{s}(X)=\overline{\bigcup_{p_{1}, \ldots, p_{s} \in X}\left\langle p_{1}, \ldots, p_{s}\right\rangle}
$$

Waring rank of generic forms

If $\sigma_{s}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)=\mathbb{P}^{\binom{n+d}{d}-1}$, then (almost) all $(n+1)$-ary d-ics have Waring rank $\leq s$.

Goal: Find the smallest s such that

$$
\operatorname{dim} \sigma_{s}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)=\binom{n+d}{d}-1
$$

Chow-Waring rank of generic forms

More generally, the Chow-Waring rank of a generic form for $\mathbf{d}=\left(d_{1}, \ldots, d_{k}\right)$ is the smallest s such that

$$
\operatorname{dim} \sigma_{s}\left(\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)\right)=\binom{n+d}{d}-1
$$

where the Chow-Veronese variety $\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)$ is the image of the map

$$
\begin{aligned}
\left(\mathbb{P}^{n}\right)^{\times k} & \rightarrow \mathbb{P}^{\binom{n+d}{d}-1} \\
\left(\left[\ell_{1}\right], \ldots,\left[\ell_{k}\right]\right) & \mapsto\left[\ell_{1}^{d_{1}} \cdots \ell_{k}^{d_{k}}\right]
\end{aligned}
$$

Dimensions of secant varieties

Expected dimension

Based on a naïve parameter count, we see that for $X \subset \mathbb{P}^{\binom{n+d}{d}-1}$,

$$
\operatorname{dim} \sigma_{s}(X) \leq s \operatorname{dim} X+s-1=s(\operatorname{dim} X+1)-1
$$

So:

$$
\operatorname{dim} \sigma_{s}(X) \leq \min \left\{s(\operatorname{dim} X+1),\binom{n+d}{d}\right\}-1
$$

We call this upper bound the expected dimension of $\sigma_{s}(X)$, denoted $\operatorname{expdim} \sigma_{s}(X)$.

Expected Chow-Waring rank

Since $\operatorname{dim} \mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)=k n$, where $\mathbf{d}=\left(d_{1}, \ldots, d_{k}\right)$, we see that if s is the Chow-Waring rank of a generic $(n+1)$-ary d-ic for \mathbf{d} and if $\sigma_{s}\left(\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)\right.$ has the expected dimension, then s is the smallest integer for which

$$
s(k n+1) \geq\binom{ n+d}{d}
$$

and so

$$
s=\left[\frac{1}{k n+1}\binom{n+d}{d}\right\rceil .
$$

Question: When does this work?

Defective cases

Cases for which $\left.\operatorname{dim} \sigma_{s}\left(\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)\right)\right)<\operatorname{expdim} \sigma_{s}\left(\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)\right)$:

- $\mathbf{d}=(2), n \geq 2,2 \leq s \leq n$
- $\mathbf{d}=(1,1), n \geq 4,2 \leq n \leq \frac{n}{2}$
- $\mathbf{d}=(3), n=4, s=7$
- $\mathbf{d}=(2,1), 2 \leq n \leq 4, s=n$
- $\mathbf{d}=(4), 2 \leq n \leq 4, s=\binom{n+2}{2}-1$

Conjecture: This is it!

Question

For the other cases, how can we show that

$$
\left.\operatorname{dim} \sigma_{s}\left(\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)\right)\right)=\operatorname{expdim} \sigma_{s}\left(\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)\right) ?
$$

Techniques

Terracini's lemma

Lemma (Terracini)

Let $p_{1}, \ldots, p_{s} \in X$ be generic. Then

$$
\operatorname{dim} \sigma_{s}(X)=\operatorname{dim}\left\langle T_{p_{1}} X, \ldots, T_{p_{s}} X\right\rangle
$$

We can reduce the problem of finding the dimension of a secant variety to finding the rank of a matrix!

For $X=\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)$, these tangent spaces are straightforward to construct using the product rule from calculus.

Idea: Choose the points p_{1}, \ldots, p_{s} carefully so we can use induction and semicontinuity.

Abundancy

Fact

(subabundant) Let $s_{1}=\left\lfloor\frac{1}{k n+1}\binom{n+d}{d}\right\rfloor$.

$$
\begin{aligned}
& \operatorname{dim} \sigma_{s_{1}}\left(\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)\right)=s_{1}(k n+1)-1 \Longrightarrow \\
& \quad \forall s \leq s_{1}, \operatorname{dim} \sigma_{s}\left(\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)\right)=s(k n+1)-1
\end{aligned}
$$

(superabundant) Let $s_{2}=\left[\frac{1}{k n+1}\binom{n+d}{d}\right\rceil$.

$$
\begin{aligned}
& \operatorname{dim} \sigma_{s_{2}}\left(\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)\right)=\binom{n+d}{d}-1 \Longrightarrow \\
& \quad \forall s \geq s_{2}, \operatorname{dim} \sigma_{s}\left(\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)\right)=\binom{n+d}{d}-1
\end{aligned}
$$

Only need two cases for each pair n, \mathbf{d}

If

$$
\operatorname{dim} \sigma_{s_{i}}\left(\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)\right)=\operatorname{expdim} \sigma_{s_{i}}\left(\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)\right)
$$

for $i=1,2$, then

$$
\operatorname{dim} \sigma_{s}\left(\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)\right)=\operatorname{expdim} \sigma_{s}\left(\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)\right)
$$

for all $s \in \mathbb{N}$.

Quasipolynomials

Fact

$\left\lfloor\frac{1}{k n+1}\binom{n+d}{d}\right\rfloor$ and $\left[\frac{1}{k n+1}\binom{n+d}{d}\right\rceil$ are quasipolynomial functions of degree $d-1$ for $n \gg 0$, i.e., there exists some ℓ and degree $d-1$ polynomial functions $s_{0}, \ldots, s_{\ell-1}$ such that

$$
\begin{aligned}
& \left\lfloor\frac{1}{k n+1}\binom{n+d}{d}\right\rfloor=s_{r}(n) \text { if } n \equiv r \quad(\bmod \ell) \\
& \left\lceil\left.\frac{1}{k n+1}\binom{n+d}{d} \right\rvert\,=s_{r}(n)+1 \text { if } n \equiv r \quad(\bmod \ell)\right.
\end{aligned}
$$

Backward difference operator

Suppose s is a polynomial function of degree $d-1$. Then the backward difference operator ∇ with step size ℓ is:

$$
\begin{aligned}
& \nabla^{0} s(n)=s(n) \\
& \nabla^{i} s(n)=\nabla^{i-1} s(n)-\nabla^{i-1} s(n-\ell) \quad \forall i \geq 1
\end{aligned}
$$

In particular, $\nabla^{d} s(n)=0$.

Newton backward difference formula

Theorem

$$
s(n)=\sum_{j=0}^{d}\binom{d}{j} \nabla^{d-j} s(n-j \ell)
$$

Observation: Suppose we have d linear subspaces of $\mathbb{P}^{\binom{n+d}{d}-1}$. $\binom{d}{j}$ is also the number of ways in which j of these subspaces can intersect.

Brambilla-Ottaviani lattice

Choose $s(n)$ points on $\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)$ so that each element of the intersect lattice of d subspaces gets the number of points corresponding to a summand of the Newton backward difference formula.

Brambilla-Ottaviani lattice (visualized)

Induction

If we compute the the ranks of matrices constructed using Terracini's lemma for $n \leq d \ell+1$ as base cases and get the expected value, then the dimension is the expected one for all n.

If we have the expected dimension for these specialized cases, then we have the expected dimension for the general case by semicontinuity.

Results for $d=3$

Using this technique:

Theorem

Except for the known defective cases, $\sigma_{s}\left(\mathrm{CV}_{\mathbf{d}}\left(\mathbb{P}^{n}\right)\right)$ has the expected dimension for

- $\mathbf{d}=(3)[B r a m b i l l a, \text { Ottaviani }(2008)]^{1}(\ell=3)$
- $\mathbf{d}=(2,1)$ [Abo, Vannieuwenhoven $(2018)](\ell=24)$

[^0]
Results for the Chow variety

Fact

Since $\frac{1}{d n+1}\binom{n+d}{d}$ is symmetric in n and d, this technique also works in the Chow case $(\mathbf{d}=(1, \ldots, 1))$ when fixing n and using induction on d

Theorem

$\sigma_{s}\left(\mathrm{CV}_{(1, \ldots, 1)}\left(\mathbb{P}^{n}\right)\right)$ has the expected dimension for

- $n=2[A b o(2014)](\ell=4)$
- $n=3, d=3$ [Abo (2014)] (partial, $\ell=6$)
- $n=3$ [T. (2013)] (partial, $\ell=9$)
- $n=3, d=3$ [T., Vannieuwenhoven (2021)] (complete, $\ell=27$)

Horace differential lemma

Horace \Longrightarrow cubics as base case

Theorem

- If $\sigma_{s}\left(\mathrm{CV}_{(3)}\left(\mathbb{P}^{n}\right)\right)$ has the expected dimension, then $\sigma_{s}\left(\mathrm{CV}_{(d)}\left(\mathbb{P}^{n}\right)\right)$ has the expected dimension for $d \geq 3$.
[Alexander, Hirschowitz (1992)]
- If $\sigma_{s}\left(\mathrm{CV}_{(2,1)}\left(\mathbb{P}^{n}\right)\right)$ has the expected dimension, then $\sigma_{s}\left(\mathrm{CV}_{(d-1,1)}\left(\mathbb{P}^{n}\right)\right)$ has the expected dimension for $d \geq 3$.
[Bernardi, Catalisano, Gimigliano, Idá (2009)]

Question: Can we do this for other \mathbf{d} ?

Another approach

Idea: Apply a technique from [Abo, Ottaviani, Peterson (2009)] on the secant varieties of Segre varieties.

Suppose A is the matrix whose rank determines the dimension of $\sigma_{s}\left(\mathrm{CV}_{(1, \ldots, 1)}\left(\mathbb{P}^{n}\right)\right)$. By careful choice of our points p_{1}, \ldots, p_{s}, we can find matrices B, C, and D corresponding to spaces of forms with n variables and degrees $d, d-1$, and $d-2$, respectively, such that

$$
A=\left(\begin{array}{ccc}
B & 0 & 0 \\
0 & C & 0 \\
0 & 0 & D
\end{array}\right)
$$

Then

$$
\operatorname{rank} A=\operatorname{rank} B+\operatorname{rank} C+\operatorname{rank} D
$$

Induction on n

Using induction, we obtain the following result.
Theorem (T. (2017))
If

$$
\operatorname{dim} \sigma_{s}\left(\mathrm{CV}_{(1, \ldots, 1)}\left(\mathbb{P}^{n_{0}}\right)\right)=s\left(d n_{0}+1\right)-1
$$

then

$$
\operatorname{dim} \sigma_{s}\left(\mathrm{CV}_{(1, \ldots, 1)}\left(\mathbb{P}^{n}\right)\right)=s(d n+1)-1
$$

for all $n \geq n_{0}$.

For fixed s, this reduces finding $\left.\operatorname{dim} \sigma_{s}\left(\mathrm{CV}_{(1, \ldots, 1)} \mathbb{P}^{n}\right)\right)$ for all n, d to checking finitely many base cases.

$$
s=9
$$

prev. known

\square
check $\left(n_{0}\right)$
check (super.)
\square induction

Nondefective for small s

Using Macaulay2 to check as many of these base cases as possible, we obtain the following result.

Theorem (T. (2017))
If $s \leq 35$, then $\sigma_{s}\left(\mathrm{CV}_{d}\left(\mathbb{P}^{n}\right)\right)$ has the expected dimension except for the previously known defective cases.

Thank you!

[^0]: ${ }^{1}$ Previously proven, using different techniques, in [Alexander, Hirschowitz (1995)] and [Chandler (2002)]

